
ORSA Journal on Comput~ng
Vol. 2, No. I , W~nter 1990

0899-1499/90/0201-0004 $0 1.25
O 1990 Operations Research Society of America

Tabu Search-Part I1
FRED GLOVER US WEST Chair in Systems Science, Center for Applied Artificial Intelligence, Graduate School of

Business, Box 41 9, University of Colorado, Boulder, Colorado 80309-0419,
ARPANET: glover-f@cubldr.colorado.edu

(Received: May 1989; final revision received: November 1989; accepted: November 1989)

This is the second half of a two part series devoted to the tabu search metastrategy for optimization problems.
Part I introduced the fundamental ideas of tabu search as an approach for guiding other heuristics to overcome
the limitations of local optimality, both in a deterministic and a probabilistic framework. Part I also reported
successful applications from a wide range of settings, in which tabu search frequently made it possible to obtain
higher quality solutions than previously obtained with competing strategies, generally with less computational
effort. Part 11, in this issue, examines refinements and more advanced aspects of tabu search. Following a brief
review of notation, Part I1 introduces new dynamic strategies for managing tabu lists, allowing fuller exploitation
of underlying evaluation functions. In turn, the elements of staged search and structured move sets are characterized,
which bear on the issue of finiteness. Three ways of applying tabu search to the solution of integer programming
problems are then described, providing connections also to certain nonlinear programming applications. Finally,
the paper concludes with a brief survey of new applications of tabu search that have occurred since the developments
reported in Part I. Together with additional comparisons with other methods on a wide body of problems, these
include results of parallel processing implementations and the use of tabu search in settings ranging from
telecommunications to neural networks.

A s a prelude to the considerations of this paper, we
briefly review some of the basic notation introduced in SIMPLE TABU SEARCH
Part 1.'' l1 An optimization problem will be represented 1. Select an initial x E X and let x* := x. Set the
in the following form: iteration counter k = 0 and begin with T

(P) Minimize c(x): x € X

where x C R,. The objective function c(x) may be
linear or nonlinear, and may incorporate penalty func-
tion components to drive toward satisfying certain types
of constraints. The condition x E X summarizes con-
straining conditions which, except in special strategic
variations, will be maintained at each step of the search,
and in many contexts of interest will require specified
components of x to receive discrete values.

A move s that leads from one trial solution (se-
lected x E X) to another may be viewed as a mapping
defined on a subset X(s) of X:

Associated with x E X is the set S(x) which consists of
those moves s E S that can be applied to x; i.e., S(x) =
{s E S: x E X(s)) (and hence X(s) = {x E X: s E S(X))).

To complete the notation relevant to later sections
of Part 11, we reiterate the description of a simple form
of tabu search used as a starting point in Part I, based
on creating a set T of tabu moves and an evaluator
function denoted by OPTIMUM.

Subject classrjicatron Programming: integer, heunstlc.

empty.
2. If S(x) - T is empty, go to Step 4.

Otherwise, set k := k + 1 and select sk € S(x) -
T such that s ~ (x) = OPTIMUM(s(x):
s E S(X) - T).

3. Let x := sk(X). If C(X) < c(x*), where x* denotes
the best solution currently found, let x* := x.

4. If a chosen number of iterations has elapsed
either in total or since x* was last improved,
or if S(x) = 0 upon reaching this step directly
from Step 2, stop. Otherwise, update T (as
identified in Part I) and return to Step 2.

To provide a basis for understanding the extensions
of ideas to be developed here, we briefly comment on
the character of the foregoing process, which rests on
the way the tabu set T is defined and treated.

A key concept in the management of T is to
constrain the search in a manner that allows latitude in
selecting "best" (highest evaluation) moves with the
OPTIMUM function, while undertaking to assure the
method will not re-visit a previous solution except by
following a trajectory not traveled before. This is ac-

4

Copyright O 2001 All Rights Reserved

Tabu Search. I1 5

complished by introducing tabu restrictions (or penal- 1. Dynamic Tabu List Processes
ties) which discourage the reversal, and in some cases
repetition, of selected moves. In the simplest imple-
mentations, an attribute or set of attributes is identified
which, if prevented from occurring in a future move,
will assure the present move cannot be reversed. The
attributes which are classified as forbidden (tabu) are
recorded on a tabu list, where they reside for a specified
number of iterations and then are removed, freeing
them from their tabu status.

This short-term memory function of tabu search
is customarily handled by treating the tabu list as a
circular list, adding elements in sequence in positions
1 through t, where t is the list size, and then starting
over at position 1 again. The addition of each element
thus erases the element recorded in its position t itera-
tions ago. Empirical results have indicated that a robust
range o f t values exists for which such a simple tabu list
performs very effectively for driving the search beyond
local optima and obtaining progressively improved
solutions (in a nonmonotonic sequence).

Longer-term memory processes are incorporated
as a means to intensify and diversify the search, as
elaborated in Part I. The guiding theme in these pro-
cesses is to endow the memory structures with a flexi-
bility to choose the "most attractive" moves by evalu-
ation functions that are determined to be most effective.
Such effectiveness generally requires evaluations that
are based not only on objective function change, but
on the state of search. Thus, beyond its simplest forms,
tabu search does not restrict evaluations to measures of
"ascent" and "descent," but employs more adaptive
and varied measures. The use of target analy~is ' '~, '~] has
proved instrumental in determining the form these
measures should take (and the conditions under which
they should be modified).

In the short-term memory process, the flexibility
to take advantage of such measures is enhanced by
means of aspiration criteria which allow a move to be
selected regardless of its tabu status. This creates a
pattern of removing moves (attributes) from the tabu
list on a basis not entirely related to the sequence
in which they were added. The identification of appro-
priate aspiration criteria can have an important ef-
fect on the performance of the short-term memory
proc-ss.111,17~201

Beyond this brief review of basic ideas, which
provides a background for understanding most of the
material that follows in Part 11, a more complete famil-
iarity with the concepts and strategies of tabu search,
including strategic oscillation, representation of the
search by a digraph, and probabilistic tabu search, will
prove additionally useful as a foundation for later
sections.

The effectiveness of simple rules for constructing and
managing tabu lists leads to consideration of extending
those rules to provide more general "dynamic" list
handling processes. Such processes can have an impor-
tant influence on which moves are available to be
selected at a given iteration, and hence can also affect
the determination of appropriate aspiration criteria.
More particularly, a primary goal of such processes is
by the evaluation functions to be embodied in OPTI-
MUM (and, by means of approaches such as target
analysis, to promote the development of evaluation
functions that enable this freedom to be applied more
effectively).

In the following development we focus not only
on general procedures but also on data structures which
are essential for efficient implementation. A number of
relationships are developed that are subject to a more
formal theorem-proof characterization, but we under-
take to provide sufficient explanation within the nar-
ration to allow the main assertions to be substantiated
by the reader without difficulty. Our treatment is in-
tended to provide useful details for those interested in
practical aspects of design and execution.

1.1. Tabu List Strategies for Single Attribute
Moves

We let TL denote the tabu list that implicitly defines
the set T of tabu moves, i.e., TL is a vector of attributes
which impart a tabu classification to moves that contain
these attributes.

As a starting point, consider TL to be given in the
following form

We suppose the elements (attributes) are indexed by
iteration, identifying the point at which they were added
to the list, and q is the index of the current iteration.
For convenience TL is depicted as a list that progres-
sively enlarges as q increases, although we implicitly
allow for earlier elements to be discarded by reference
to a selected limiting size for TL as in customary
tabu list processes (e.g., treating TL as a circular list).
Correspondingly, we may identify the list of solutions
(x(l), x(2) , . . . , x(q)) such that, for each i, e(i) is the
attribute associated with the move applied to x (i) to
prevent this move from being reversed to return to x(i).

We will depart slightly from usual notation in the
following development by supposing that it is not the
attributes e(i) themselves which are tabu, but rather
their inverse (or complementary) attributes P (i) . By this
means, e(i) may directly refer to the move applied
to x(i) rather than to its reversal. For example, in a

Copyright O 2001 All Rights Reserved

6 Glover

zero-one integer programming context, if x(i) is trans-
formed into x(i + 1) by a move that sets x, = 1, then
e(i) may be taken to represent this assignment, and
hence the attribute t (i) represents the tabu assignment
x, = 0 that transforms x(i + 1) into x(i). (In this case,
the move attribute completely identifies the associated
move. However, when a move is defined more broadly
to include reference to the solution to which it is
applied, additional attributes can be included such as
objective function values, linear combinations of se-
lected variables, and so forth.)

In general we will assume, as in the preceding
example, that the move attributes satisfy a suficiency
property, which specifies that no two solutions, x(h)
and x(k), for h < k, can be the same unless there exists
a matching of the elements e(h), . . . , e(k) such that,
for each pair e(r), e(s) of the matching, P(r) = e(s).

It is useful for our subsequent purposes to state
this property in a different fashion, based on a process
of "successive cancellation." We assume for conven-
ience that the attributes e(i) are defined so that no e
can appear twice on TL unless 2 appears in an inter-
mediate position. (For example, x, = 1 cannot occur
twice unless x, = 0 intervenes.) In the sequence e(p),
. . . , e(q), if any e(r) is followed by an element e(s)
such that e(r) = C(s) then e(r) is said to be canceled
by the first such e(s) (i.e., the e(s) indexed by the least
s > r) which exhibits this property. Consider all maxi-
mal subsequences, beginning with a canceled element
that does not cancel any previous element, where each
successive element in the subsequence cancels the ele-
ment that precedes it in the subsequence. (Hence, the
last element is uncanceled.) All such subsequences can
be identified by a single pass through the elements e(p),
. . . , e(q), checking whether each element encountered
cancels an earlier element, and if so, adding it to the
appropriate subsequence (and also adding the element
it cancels if the earlier element is the start of the
subsequence). Then the sufficiency property states that
these subsequences contain all the elements e(p), . . . ,
e(q), and every such subsequence has an even number
of elements.

Note that if each e(i) consists of setting the value
of a selected variable to 0 or 1 (in a zero-one IP
application), or consists of adding or deleting a selected
element from a set (in an optimal set membership
application), then these elements satisfy the sufficiency
property, and in addition satisfy a corresponding neces-
sity property, which stipulates that x (p) = x(q) will
result whenever a matching (or collection of subse-
quences) exists which has the form used to define the
sufficiency property.

The goal of this section will be to focus on two
different ways of managing TL to provide a more
dynamic (time and event dependent) characterization

of tabu status. In each of these, an attribute P(i) is not
automatically tabu as a result of the membership of e(i)
in TL, but only potentially tabu. In spite of this relax-
ation of customary tabu status, TL will be treated in a
manner that assures no solution will be duplicated
within the span of moves subjected to consideration,
except where aspiration criteria or the absence of
admissible alternatives may lead to selecting a move
designated to be tabu.

1.2. Tabu Status Based on Cancellation
Sequences

We associate with the tabu list TL an active tabu list,
ATL, which consists only of the elements of TL that
have not been canceled, and represent ATL in the same
general form as TL, i.e.,

ATL is understood to be a subsequence of TL, which
contains the same last element e(q) (derived from the
move that transforms x(q) into the solution x(q + 1)).
We assume that a buffer of the tb most recent elements
e(i) (i.e., for i > q - tb) is created which serves a
purpose similar to that of a standard tabu list by auto-
matically defining the associated elements 2 (i) to be
tabu. (Such a buffer will appropriately be somewhat
smaller than the size of a standard tabu list, however.)

To understand the way that ATL will be managed,
consider a step in which an element e(q + 1) is added
to ATL, where e(q + 1) # P(q) (under the assumption
tb 3 I), and suppose that e(q + 1) cancels an earlier
element e(i) of ATL as a result of e(q + 1) = P (i) . (Since
ATL consists only of uncanceled elements, the identi-
fication of e(i) is unique.) The structure of ATL, upon
adding e(q + l), but before dropping the element e(i)
canceled by e(q + I), may be depicted as follows:

The elements e(h) and e(j) are respectively the imme-
diate predecessor and the immediate successor of e(i)
on the list ATL. The element e(j) may be the same as
e(q), and e(i) may be the same as e(p) (in which case
the predecessor e(h) of e(i) does not exist or is not in
ATL).

If the addition of e(q + 1) constitutes the first time
that any element cancels a previous element (hence
ATL and TL are the same to this point) then the
sufficiency property implies that no two solutions gen-
erated so far can be the same. Moreover the solution
x(i) cannot be duplicated by the solution resulting from
any sequence of future moves unless every element in
the nonempty sequence e(j), . . . , e(q) is canceled. We
call this sequence which lies between the canceling
element e(q + 1) and the canceled element e(i) the
Cancellation Sequence, or C-Sequence. Given that we

Copyright O 2001 All Rights Reserved

Tabu Search. I1 7

prevent the cancellation of e(q) by e(q + I), if we can
insure that at least one element in each successive C-
Sequence will remain uncanceled, then no solution can
ever repeat. (This is a sufficient but not a necessary
condition to avoid repetition of solutions.)

This means of avoiding a duplication of an earlier
solution can be assured by specifying an attribute 2(i)
to be tabu if and only if the associated element e(i) of
ATL is the last remaining member of some C-Sequence,
once all other members have been canceled. To enforce
this condition successfully, a way must be afforded to
remove each canceled element from every C-Sequence
to which it belongs, and to identify when one or more
of these sequences has been reduced to a single element.

An efficient method for accomplishing this can be
based on the observation that whenever one sequence
lies within another, the larger sequence is dominated
by the smaller and may be discarded, since retaining
an element in the smaller sequence assures that one
is also retained in the larger. (This observation is also
central to establishing the sufficiency of nonempty
C-Sequences to avoid duplicate solutions, as long as
moves exist that permit this condition to be main-
tained.) Specifically, we introduce a data structure
consisting of two arrays, startseq(e) and endseq(e),
defined for each element e on the active tabu list ATL,
where startseq(e) denotes the element f on ATL that
starts the C-Sequence terminated by e (where f = void,
a dummy element, if e does not terminate such a
sequence), and endseq(e) denotes the element g on ATL
that ends the C-Sequence initiated by e (where g = void
if e does not initiate such a sequence). The dominance
property implies that these two values are uniquely
defined for each e on ATL (i.e., of two contending
values for f or g, the element which is closer to e on
ATL takes precedence). Moreover, the condition in
which e is the only element of a C-Sequence is identified
by startseq(e) = endseq(e) = e.

The use of these arrays and the role of dominance
is illustrated in Figures 1 and 2. Figure 1 shows the
creation of a C-Sequence as a result of a cancellation
step, together with the associated startseq and endseq
assignments. Figure 2 provides an example of domi-
nance, and of the creation of tabu status. (It may be
noted in Figure 2 that the "old C-Sequence" will also
dominate the new if the canceled element occurs as
early in the ATL list as the starting element of the old

ATL Before Cancellation

ATL After Cancellation

Figure I. Creation of C-sequence by cancellation.

New C-Sequence Dominated by Old
(Hence New 1s Not Recorded)

New
Element

Old C-Sequence

New C-Sequence I
Later ATL Before Creatina Tabu Element

(Remalning C-Sequence Accentuated)
New

Element

Later ATL After Creating Tabu Element

(Remalning C-Sequence Accentuated)

startseq(4) = endseq(4) = 4

(Element T 1s tabu)

Figure 2. Domination and creation of tabu status.

C-Sequence, since the form of this sequence after the
cancellation will still lie inside the new C-Sequence.) list, i.e., first-dummy precedes the first (oldest) element

To complete the basis for identifying and updating and last-dummy succeeds the last (most recent) ele-
the C-Sequences, we introduce the two arrays predeces- ment. Finally, we define iteration(e) = the iteration e
sor(e) and successor(e), which respectively identify the was added to ATL, letting this value equal 0 if e is not
elements that precede and succeed e on ATL. Also, on ATL. Then for two elements e and f on ATL,
we introduce two elements, first-dummy and last- iteration(e) < iteration(f) indicates that e appears be-
dummy, which respectively begin and end the ATL fore f. The iteration array will be used to determine

Copyright O 2001 All Rights Reserved

8 Glover

whether a newly created C-Sequence is dominated by
an earlier C-Sequence. This determination is made by
reference to a special variable, last-start, which identi-
fies largest value of iteration (e) such that e is the starting
element of a C-Sequence; i.e., such that endseq(e) #
void. Then iff denotes the element that starts the new
C-Sequence, this C-Sequence will be dominated by an
earlier one if and only if last-start 2 iteration (f).

The procedure for managing the tabu list, based
on the use of cancellation sequences, is indicated as
follows. We refer to e(q + I), the new element to be
added to ATL, and to e(q), the previous last element of
ATL, without altering notation (though these elements
do not represent indexed members of a list in the
procedure). The most important part of this procedure
is the update of preexisting C-Sequences made possible
by the dominance property when a cancellation occurs.

C-SEQUENCE METHOD

This is the main sequence of steps. The data
structure includes elemental lists: iteration, startseq,
and endseq defined over elements (e); and, ATL
(Active Tabu List), which is dynamic (limited by a
maximum size), defined by predecessor and
successor lists.
1. Initialize:

For all elements (e), set iteration(e) := 0;
startseq(e) := void; endseq(e) := void.

Set last -start := 0; predecessor(1ast -dummy)
:= first-dummy; successor(first-dummy)
:= last-dummy.

2. Iterate until stopping rule is satisfied (q denotes
iteration number):
Set e(q) := predecessor(1ast-dummy); v :=

complement of e(q + 1).
IF iteration(v) # 0 THEN perform Cancel(v).
Insert e(q + I) on ATL:

predecessor(e(q + I)) := e(q);
successor(e(q)) := e(q + 1);

predecessor(1ast-dummy) := e(q + 1);
successor(e(q + 1)) = last -dummy.

Set iteration (e(q + I)) = q + 1 and complete
update of other relevant tabu conditions:
Add e(q + 1) to the starting buffer of tabu

elements, and remove the oldest element
if the addition of e(q + 1) causes the
buffer to contain more than tb elements.

If a tabu element (excluding those on the
starting buffer) has been tabu for more
than t iterations, release it from its tabu
status.

CANCEL(v)

This cancels the element identified by v (entering
argument).
1. Set u := predecessor(v); w := successor(v).
2. IF startseq(v) # void THEN update C-Sequence

that ends with v (and which necessarily
dominates any C-Sequence that ends with
its predecessor, u):
Set f := startseq(u); endseq(f) := void;

startseq(u) := startseq(v).
IF startseq(u) = u and iteration(u) 2 least-

cut-off, THEN make u tabu. (u became the
only element in a C-Sequence).

3. IF endseq(v) # void THEN update (v starts a C-
Sequence that dominates any C-Sequence

I that starts with its successor, w):
Set g := endseq(w); startseq(g) := void;

endseq(w) := endseq(v).
IF endseq(w) = w and iteration(w) 2 least-

I cut-off, THEN make w tabu. (w became the
only element in a C-Sequence).

Set last-start := maximum(1ast -start,
iteration (w)].

4. IF last-start < iteration (w) THEN create new,
undominated C-Sequence:
last-start := iteration(w); startseq(w) := e(q);

endseq(e(q)) := w.
5. Re-link u to w and drop v from ATL:

Set predecessor(w) := u; successor(u) := w;
iteration(v) := 0.

6. Free e from its tabu status if it is tabu, and
return.

Several aspects of the foregoing procedure may be
noted. First, the operations involving the updates of
C-Sequences by the dominance principles are very ef-
ficient, involving no loops or searches. Second, when u
or w becomes the only element of a C-Sequence, and
qualifies to become tabu, it is allowed to escape its tabu
status if it has resided on ATL long enough (has a small
enough value of iteration(u) or iteration(w)). This cut-
off value involving residence on ATL is a parameter
different from the limit t, which governs the number of
iterations an element is kept tabu after receiving a tabu
classification. One of these two parameters may be
disregarded, if desired. However, if t is retained, intui-
tion suggests that t + tb should not greatly exceed the
tabu list sizes found to be effective in standard imple-
mentations. (In any event, tb should be relatively small,
perhaps only 1 .)

Third, memory savings are possible due to the fact
that an arbitrary element e and its complement 2 cannot
appear on ATL simultaneously. Hence the arrays that

Copyright 0 2001 All Rights Reserved -

Tabu Search. I1 9

use these elements as arguments can be halved in size
by means of an appropriate external flag (which intro-
duces at most one half-sized array). However, if the
number of such elements is still large, then predecessor,
successor, startseq, endseq and iteration can instead
name positions on a circular TL list, which contains
the elements of only as many iterations as are chosen
to be relevant (essentially twice the number of iterations
an element is allowed to reside on TL before being
considered ineligible to receive tabu status, noting that
elements beyond this age may still define relevant C-
Sequences since TL is not the same as ATL). In this
case, iteration(e) can be inferred from the position on
the TL list rather than maintained as a separate array.

1.3. Tabu List Management by the Reverse
Elimination Method

The second dynamic process for managing tabu lists is
based on generating move restrictions implied by C-
Sequences of a more general form, whose boundaries
can expand as well as contract. The appropriateness of
expanding the boundaries of a C-Sequence derives from
the fact that the addition of a new element to ATL
protects against the return to solutions otherwise
"guarded by" some C-Sequences, and thus should be
included among these sequences. There is an obstacle
to doing this, however, because the new element is not
adjacent to the previous elements, and generally no way
exists to rearrange elements and boundaries so that
these expanded C-Sequences can be defined by the
convenient types of data structures introduced for
handling ordinary C-Sequences.

The approach we propose to overcome this obsta-
cle operates by successively eliminating elements of the
TL list, not by the sequence of steps that occurs in
keeping ATL updated at each iteration, but by the
reverse sequence, hence producing what we call the
Reverse Elimination Method. After a new element is
added to TL, becoming the new e(q) in the sequence
TL = (e(l), . . . , e(q)), a trace is initiated applying rules
for eliminating elements that are slightly different from
those used to produce ATL. Specifically, as each e(i) is
visited in turn (in the process of tracing backward from
e(q) to e(l)), a Residual Cancellation Sequence from
e(i) through e(q) is identified, along with the num-
ber n(i) of elements in this sequence. A Residual
C-Sequence is defined to be a subsequence that remains
after removing a maximum number of pairs of mu-
tually canceling elements, i.e., pairs of the form (e, P),
where each member of the sequence is allowed to
belong to only one such pair.

When the suficiency assumption holds, it is not
difficult to see that the solution x(i) will be the same
as x(q + l), the solution produced by the move asso-

ciated with e(q), only if n(i) = 0, and this becomes an
if and only if condition provided the necessity assump-
tion also holds. Moreover, if n(i) = 1 and e denotes the
unique element belonging to the associated Residual
C-Sequence, then under the same assumptions the
new solution produced by the move associated with
e(q + 1) will duplicate x(i) only if (or if and only i f)
e(q + 1) = 2. Thus, the rule to prevent the new solution
from duplicating any preceding solution is to make C
(and the moves associated with it) tabu at each point
of the reverse trace where such an element is found, as
signaled by n(i) = 1.

Generally, of course, since the size of q can become
large, it is appropriate to limit the size of TL as in
customary tabu search applications, conducting a re-
verse trace of the sequence e(p), . . . , e(q) for a selected
p 3 1. Similarly, a buffer may be maintained which
imparts temporary tabu status to the last tb elements of
the list, as in the C-Sequence method. The rule that
classifies elements of TL tabu by the Reverse Elimina-
tion Method does not change under these conditions.

The data structure requirements of the method are
very simple, making use of the same predecessor and
successor arrays used by the C-Sequence approach.
However, these arrays do not identify the composition
of the ATL list, but instead successively identify the
elements of each Residual C-Sequence generated during
the reverse trace of TL. Beyond this, the method re-
quires only the TL array itself. The value n(i) can be
treated simply as a number n, since we are only inter-
ested in its current value as it changes from step to step.

To characterize the method, we indicate that
an element e is absent from the current Residual
C-Sequence by introducing a dummy element absent
and setting successor(e) = absent. The first element of
the current Residual C-Sequence (associated with the
earliest iteration) will be denoted by the variable first-
e. As before, first-dummy precedes the first element of
each linked sequence and last-dummy follows the last
(associated with the most recent iteration).

An important departure from the C-Sequence
Method, in addition to tracing in the reverse direction,
is that the elimination operation not only removes a
previously canceled element but also omits the new
element, that causes the cancellation, from the se-
quence. Before presenting the details of the procedure,
we provide an illustration of how it operates in Figure
3, tracing the TL list back to the first iteration (p = 1).
For simplicity no buffer is employed. (In contrast to
the C-Sequence Method, tb = 0 is always possible with
the Reverse Elimination Method.) The array structures
used for implementation are also not shown, though
the processes involved should be clear by reference to
the effect of each successively examined e(i) of TL on
the composition of the Residual C-Sequence.

Copyright O 2001 All Rights Reserved

10 Glover

Figure 3. Reverse elimination method.

i

8

7

6

5

4

3

2

1

It is interesting to observe that the tabu classifica-
tions produced by the method for this example are the
same as those produced by the more restrictive C-
Sequence Method when the latter employs a minimum
buffer size of tb = 1. However, with the addition of the
element e(9) = '5 to TL, the Reverse Elimination
Method continues to generate a set of restrictions which
is exactly necessary and sufficient to prevent duplica-
tions, while the C-Sequence Method produces two ad-
ditional (unnecessary) tabu restrictions.

The precise details of the method that generates
the sequences and tabu classifications shown in Figure
3 are as follows.

REVERSE ELIMINATION METHOD AT
EACH ITERATION

Residual C-Sequence

3

5, 5

4 , 5, 7
4 , 5 (5 and 5 cancel)

4 (3 and 3 cancel)

2 . 4

comment:
The following local initialization is implemented

after selecting the move whose associated
attribute is e(q).

For each element e: designate e to be "not tabu"
, and set

n

1

2

3

2

1

successor(e) := absent
predecessor(1ast-dummy) := first-dummy

successor(first-dummy) := last -dummy
first-e := last-dummy

Tabu Status

3 Tabu

i Tabu

2 (i and 4 cancel) 1
6, 2

n := 0
comment:

Select the current size of TL by choosingp < q,
and select the buffer size tb. Then trace
the TL list in reverse order, as follows.

for i := q until p do

5 Tabu

begin
e := e(i)
if successor(C) = absent then
begin

comment:
Expansion Step: C is not in the current

residual C-Sequence, hence e becomes
the new first element of this sequence.

successor(e) := first-e
predecessor (first -e) := e
first-e := e
predecessor(e) = first-dummy
n : = n + 1
if n = 1 then make C tabu

else begin
comment:

Elimination Step: P is in the current residual
C-Sequence. Hence e is not added and
C is eliminated.

f := predecessor(2)
g := successor(2)
successor(f) := g
predecessor(g) := f
 successor(^) := absent
if P = first-e then first-e := g
n : = n - 1
if n = 1 then make the complement of first-e

tabu
comment:

if n = 0, the solutions x(i) and x(q + 1) are
the same

end;
comment:

create automatic tabu status for elements of
the buffer

if i > q - tb then make C tabu
end;

Reducing Effort and Related Strategic Considerations

The foregoing procedure evidently requires more work
than the C-Sequence procedure, since it traces the TL
list at each iteration. However, some shortcuts are
possible at the expense of more memory. For example,
there is no need to continue the trace after adding an
element on the Expansion Step which does not contain
a complement among earlier elements of TL (a condi-
tion easily recorded).

A process that may achieve greater savings is the
following. On a given iteration, record a value least (n)
for each value of n from 0 to a selected cut-off n*,
which identifies the smallest value of i for which a
Residual C-Sequence has a size of n(i) = n. This value
may be determined automatically by starting with

Co~vriaht O 2001 All Riahts Reserved -

Tabu Search. I1 11

leasr(n) = q for all n, followed by setting least(n) = i,
where n = n(i), for each i in the reverse sequence from
i = q to p. Then, given that n(i) cannot decrease by
more than 1 on the next iteration, it is unnecessary at
that point to trace earlier than a value of = Mini-
mum(1east (O), least (1), least (2)), and in general it is
unnecessary on the next r iterations to trace earlier than
a value of i = Minimum(least(k): k = 0, . . . , r + I). A
simple auxiliary means to save effort is to identify tabu
status by setting tabu(e) := q, the current iteration value,
thereby avoiding the need to change or erase previous
array values at the start of each new iteration.

The allowance for choosing p anew at each itera-
tion, instead of giving it a fixed relationship to q, reflects
a strategic property of the Reverse Elimination Method
not shared by other tabu list approaches. Specifically,
there is no "danger" in choosing p too small (i.e., in
making TL too large), except for considerations of
computational effort. In other tabu list procedures, if
TL grows beyond a certain size, the selection of new
moves becomes restricted too severely, and solution
quality suffers. With the Reverse Elimination Method,
however, the only restriction caused by creating tabu
status (except for elements in the buffer, which may
allowably be empty) is to prevent returning to an earlier
solution. Assuming the existence of multiple paths to
the neighbors of such solutions, this restriction is likely
to be benign. (In the event that it is not, appropriately
designed aspiration criteria may permit tabu status to
be overridden and thereby return to an attractive
region.) Consequently, to exploit the fact that a fuller
examination of TL is generally advantageous, the
Reverse Elimination Method can employ a strategy of
periodically tracing TL to a deeper level than chosen
for "customary" iterations, persisting until generating
some number of solutions that are verified to provide
no duplication at that level. However, it is probably
unnecessary in most applications to trace back much
earlier than a first local optimum, since solutions en-
countered before such a point are unlikely to be revis-
ited in any event.

The Reverse Elimination Method also creates an
appealing opportunity for diversifying the search pro-
cess, as accomplished by the use of long-term memory
functions in other versions of tabu search. In particular,
rather than making a move attribute tabu only when
n = 1, it is additionally possible to penalize, or condi-

added to the current Residual C-Sequence, and n is
increased by 1, set min-n(e) := Minimum(min-n(e),
n). On an Elimination Step, when 2 is eliminated and
the resulting n is at most n *, trace the successive pred-
ecessors f of 2, and set min-n(f) := Minimum(min-
n(f), n) for each of these predecessors encountered.
(These are the only members of the Residual C-
Sequence that may receive a smaller assigned value
than previously.) At the completion of the reverse trace,
each element e thus receives a penalty (or is classified
tabu) according to the size of min-n(e).

It is to be noted that situations may arise where no
move exists that will avoid duplicating a previous so-
lution. The number of such situations can be strategi-
cally reduced by approaches that penalize rather than
categorically forbid infeasible moves, but it is still pos-
sible to become walled off with no recourse except to
repeat an earlier solution. Under such circumstances
(i.e., where each available move contains an attribute
made tabu by the Reverse Elimination Method), a
reasonable choice is to select the tabu attribute e(i) with
the smallest i value. To make this choice accurately,
the method should keep track for each e of the first
(hence largest) i for which e is made tabu. We conjecture
that such a choice has implications for finiteness in the
zero-one IP and optimal set membership examples,
provided infeasible moves are penalized rather than
strictly removed from consideration.

An Alternate Characterization of Residual C-Sequences

Before progressing to more advanced considerations,
we note that it is possible to characterize the Residual
C-Sequence associated with each e(i) of TL, which we
denote by RCS(i), in an alternate way that does not
require the application of the Reverse Elimination
Method. Specifically, for each h s q define

cancel(h) = Maximum(k: k < h and e(k) = C(h))

where cancel(h) = 0 if no e(k) of the specified form
exists. The index i = cancel(h) thus identifies the ele-
ment e(i) that is canceled by e(h) in the progressive
construction of ATL, at the point where e(h) is added
as the new element of ATL (and e(i) accordingly is
dropped). Then, associated with the sequence e(i), . . . ,
e(q), which represents the attributes of the moves that
collectively transform x(i) into x(q + I), the Residual
C-Sequence RCS(i) is given by

tionally avoid, the choice of attributes associated with RCS(i) = (e(h): i s h s q and cancel(h) < i).
low n values, e.g., for n s n*.

This can be accomplished by creating a record By reference to this characterization, the change in
min-n(e) which identifies the smallest value n(i) value RCS(i) each time a new element e(q) is added to TL is
for any Residual C-Sequence that contains element e. easily specified. By convention, treat RCS(q) as empty
To determine this value, start each iteration by setting before e(q) is added, and let the symbols "+" and "-"
min-n(e) := n* + 1 (a value for n that receives no denote the operations of adding and deleting elements
penalty). On the Expansion Step, when element e is from sequences (effectively treated as sets). Then the

Copyright O 2001 All Rights Reserved

12 Glover

change in RCS(i) is given by

RCS(i) := RCS(i) + e(q) for cancel(q) < i a q

and, letting k := cancel(q), if cancel(q) > 0, set

RCS(i) := RCS(i) - e(k) for cancel(k) < i a k.

Repeating this process, we let h := cancel(k) take the
role of q (provided cancel(k) > O), and hence in turn
let k := cancel(h), thereby identifying successive inter-
vals of i indexes in which RCS(i) either adds the ele-
ment e(h) or drops the element e(k), where e(h) = e(q)
and e(k) = P(q). Accordingly, the value of n(i) increases
or decreases by 1 over these intervals.

These relationships may be susceptible to exploi-
tation by intermediate level procedures that combine
aspects of the C-Sequence and Reverse Elimination
Method. For example, a "shadow ATL" may be main-
tained that encompasses the elements e(h) for h =
cancel(i), associated with each e(i) on ATL, noting that
updates involving ATL and its shadow can be handled
more efficiently than those involving TL, and can gen-
erate tabu conditions that are sufficient to prevent
repetition of solutions.

1.4. Adaptations for Bounded Variable Integer
Programs

Integer programming problems with general upper
bounds are often disregarded in treatments of combi-
natorial optimization, under the supposition that pro-
cedures which apply to zero-one problems apply to the
general upper bounded case as well. Though theoreti-
cally accurate, this assessment disregards the fact that
considerable inefficiency and excessive demands on
memory may result by "direct adaptations." Conse-
quently, we undertake to show how the foregoing
procedures can be adapted in a more effective man-
ner to treat IP problems with general upper bounds, re-
femng specifically to the class of moves that consists
of changing the value of a selected variable to an adja-
cent value.

Perhaps surprisingly, standard techniques to trans-
form the problem into one with zero-one variables are
not only inefficient, but fail to work in this context.
For example, if a variable x, is represented by a binary
expansion as XI, + 2x2, + 4x3] + 8x4,, . . . , then to
change the value of x, from 7 to 8 involves a composite
move that changes XI,, x2, and x3, from 1 to 0, and x4,
from 0 to 1. Other representations of xJ as a linear
combination of zero-one variables require the use of a
composite move that changes the value of one variable
from 1 to 0 and another variable from 0 to 1. Such
moves belong to the class of paired attribute moves
which require more complex rules and memory struc-
tures, and whose treatment is indicated in Section 1.5.

Bounded Variable Specialization of the Reverse Elimination Method

We first consider how the Reverse Elimination Method
can be adapted to the bounded variable setting. This
adaptation is considerably simpler than the one for the
C-Sequence Method, and allows a convenient means
for introducing considerations basic to both procedures.

Move attributes that satisfy the sufficiency and
necessity conditions discussed earlier result by the nat-
ural device of creating an attribute to represent the
increase or decrease of each integer variable to a specific
value. For example, by selecting an attribute e to rep-
resent increasing x, from 7 to 8, the complement 2
represents decreasing x, from 8 to 7. In principle, the
Reverse Elimination Method in the form previously
described can be applied directly to this representation
of move attributes. However, this unfortunately creates
an attribute for every value to which x, can be increased
or decreased, producing 2UJ attributes for every variable
x,, where U, is the upper bound for x,. Thus, a 500
variable IP problem where each variable is constrained
to lie between 0 and 100 gives rise to about 1,000,000
elements, and hence requires a corresponding dimen-
sion for each of the predecessor and successor arrays.

There is a simple way to organize the Reverse
Elimination Method by the use of a different data
structure that will reduce this component of memory
by a factor of more than 30. In general, instead of
requiring array space of 2(C U,), this alternative data
structure requires an array space of only 3m, where m
is the total number of variables-essentially introducing
a single array of m elements beyond the two arrays of
m elements required by the zero-one problem.

The approach is based on the fact that it is not the
sequence of elements in the Residual C-Sequences that
is important, but only their identity. Thus the predeces-
sor and successor arrays serve only as a convenient
means for tracking this identity (and indeed, by the use
of bit string coding, and efficient routines for identifying
bits that are "on," the zero-one case can be handled
with less memory as well).

The specialization of the Reverse Elimination Pro-
cedure to the zero-one IP example allows a simple
interpretation for the elements of the Residual C-Se-
quence that are linked by the predecessor and successor
arrays. In particular, at the point where the element
e(i) is either added to the sequence or used to eliminate
its complement, the residual C-Sequence elements iden-
tify precisely the variables xJ whose values in x(i) differ
from their values in the current solution x(q).

By extension, to track the corresponding infor-
mation for the general upper bound case, we use a
deviation array which identifies the vector difference
x(i) - x(q), i.e., deviation(j) = xJ(i) - xJ(q). The
specialization of the Reverse Elimination Procedure to

Copvriaht O 2001 All Riahts Reserved - -

Tabu Search. I1 13

this setting occurs by starting with all entries of the
deviation array equal to 0. Each e(h) encountered dur-
ing the reverse trace from e(q) to e(i) in TL records the
information that a particular xJ was increased or de-
creased, and on the basis of this information the cor-
responding value of deviation(j) is changed in the
opposite direction. The value of n in the Reverse Elim-
ination Procedure accordingly represents the sum of
the absolute values of the deviation array entries in this
specialization. The predecessor and successor arrays are
given a changed role, which consists of linking the
indexes of nonzero entries of the deviation array.
Hence, when n = 1, the only element remaining linked
by these arrays is the unique index J such that devia-
t ion(~) = 1 or -1, indicating that xJ appropriately
becomes tabu to be increased or decreased, respectively,
in the current solution. The resulting specialization of
the Reverse Elimination Method to the bounded vari-
able IP setting thus becomes both straightforward and
easy to execute.

The process which incorporates this specialization
is illustrated in Figure 4.

Bounded Variable Specialization of the C-Sequence Method

The handling of general bounded IP problems with the
more efficient (though more restrictive) C-Sequence
Method requires a different type of approach. The
dominance property once again leads to a process that

&eclalizazion for Bounded Variable IP

TL Llst Code
j means Increase x . by 1

-j means decrease x i by 1

Reverse Eli3ination Trace

I devration (j) I

Figure 4. Reverse elimination method.

is highly efficient and which achieves an economical
use of memory.

As a basis for this specialization we introduce an
array ATLrecord, which is dimensioned to the maxi-
mum size to be allotted to the ATL list, and which
contains the elements of this list without specifying the
order in which they appear. The order is provided by
altering the function of the predecessor and successor
arrays to link ATLrecord indexes. Specifically for h =
predecessor(i) and j = successor(i), the entries ATLrec-
ord(h), and ATLrecord(j) identify the elements that
immediately precede and follow the element ATL-
record(i) on the ATL list. Correspondingly, the array
entries startseq(i) and endseq(i) name the positions in
ATLrecord of the elements that start and end the C-
Sequences that the element ATLrecord(i) ends and
starts, respectively. Similarly, the iteration array is
keyed to positions of ATLrecord.

We will show by means of this data structure, and
two additional arrays, that the C-Sequence Method can
be specialized in a way that permits the associated
component of memory to be reduced by a factor
roughly equivalent to that achieved for the Reverse
Elimination Method. To describe how this occurs, we
first stipulate that the predecessor and successor arrays
must initially link two different sets of indexes (each
beginning and ending with its own fixed dummy in-
dexes), one which consists of the positions on ATLrec-
ord where elements of ATL currently are found, and
the other which consists of "free" positions. When an
element is canceled, its ATLrecord index goes on
the linked list of free positions. Once ATLrecord is
full, however, and no free positions remain, the
current element added to ATL goes in the position of
ATLrecord occupied by the element canceled on this
step, or by the oldest (earliest) element if no element is
canceled, and this position is relinked to become the
new "last" position.

The elements recorded on ATLrecord embody
three pieces of information: the variable xJ whose value
was changed on a given iteration, the new value as-
signed to this variable, and whether the change was an
increase or decrease. The first of the two additional
arrays for exploiting this representation effectively has
the purpose of identifying the location of each e on
ATLrecord, and will be denoted location (e). Instead of
defining this array over elements recorded in ATLrec-
ord, however, we specify that the elements accessed by
location(e) are "reduced elements" that indicate only
the identity of specific xJ variables and whether they are
increased or decreased (without reference to the value
attained). This results in much less memory than would
otherwise be required, but entails that location(e) points
only to a subset of the elements on ATLrecord. To

Copyright O 2001 All Rights Reserved

14 Glover

compensate for this, the second additional array, de-
noted pre(i), links positions of ATLrecord which loca-
tion(e) temporarily omits. Specifically, for each element
ATLrecord(i), pre(i) names the position h such that
ATLrecord(h) contains the most recent earlier appear-
ance of the same variable x, and the same direction of
change recorded in ATLrecord(i). (A dummy position
is named if ATLrecord contains no such entry.) Then
location(e) identifies precisely the latest position (asso-
ciated with the largest iteration value) that a given
variable x, was changed in a given direction.

The ability to restrict location(e) in this way derives
from the fact that this entry names the only position in
ATLrecord which is currently of interest (for the asso-
ciated "reduced" e)-i.e., it identifies the only element
that currently can be canceled by a new move that
changes x, in the direction opposite to that indicated by
e. Upon cancellation, the new position to be named
by location(e) is determined by the value of pre(i), for
i = location(e).

To complete the process, when the attributes of
the new moves are recorded in ATLrecord(h), then
location(e) (for e identifying the appropriately reduced
subset of these same attributes) gives the proper entry
for pre(h), and location (e) is reset by location(e) := h.
Indeed, by these observations, the use of the location
and pre arrays makes it possible to record attributes in
reduced form (identifying only a variable x, and a given
direction of change) within ATLrecord itself, provided
current values of the variables are stored separately,
and we assume this henceforth.

It remains only to designate how tabu status can
be recognized and enforced. As a result of the foregoing
process, the condition startseq(i) = i, which identifies
the element ATLrecord(i) to be tabu, can only be
relevant for the current solution in the situation where
location(e) = i. Thus, whenever a change results in
setting startseq(i) = endseq(i) = i, the attribute e =
ATLrecord(i) is checked to determine whether loca-
tion(e) = i, and similarly, when location(e) is updated
to name a new position i, the condition startseq(i) = i
can be checked. Since location(e) identifies the index
of the only move for x, (in the given direction) that is
relevant to be considered tabu, all tabu moves can be
identified by flagging location(e) negative for those
elements e that currently identify a tabu move in this
manner.

An illustration of how the ATLrecord array is
linked by the location and pre arrays is provided in
Figure 5. For convenience, this illustration assumes the
elements of ATLrecord occur in the same order as in
ATL (hence, appearing in the order of their iteration
values, for the subset of iterations encompassed by
ATL). By this means, the predecessor and successor
arrays refer to successive indexes of ATLrecord and it

Part ia l Data Structures f o r Bounded Variable I P

Note: ATLrecord 1 s assumed to have the same
order as ATL (hence predecessor(1) = 1-1)

Figure 5. C-Sequence method.

is unnecessary to identify them separately to determine
the "true order" of ATLrecord. We note that this type
of data structure and the rules for its management can
be adapted to a variety of other settings involving large
numbers of elements, where these elements belong to
ordered classes in which each member (other than the
first) can occur in a solution only if its "class predeces-
sor" does also.

1.5. Dynamic Tabu Lists for Paired Attribute Moves

A wide range of procedures for optimization problems
operate by means of moves that may be represented by
a pair of attributes (e, f). Such paired attribute moves
are exemplified by a variety of "add/drop" operations,
such as adding and dropping elements from a set, edges
from a graph, or variables from a basis. Rather than
treat the attributes of such moves as ordered pairs, we
explicitly consider an element used in two different
ways to be two different move attributes; hence, in one
move e may represent adding a given element and in
another move g may represent dropping the same ele-
ment (in which case, we may also write g = 2).

Such paired attribute moves can also include single
attribute moves by the use of "null attributes" a and d,
which respectively take the place of the operations of
adding and dropping "ordinary" elements. Thus if e
represents the attribute of adding a given edge to a
graph, the pair (e, d) represents the move consisting of
adding this edge without dropping another (i.e., drop-
ping instead the null attribute d). By the convention
that d = ~3 the subsequent development can be applied
consistently to this type of representation. In the case

Tabu Search. I1 15

where each element is eligible for membership only in
one specific set, it is preferable to create a different pair
of null elements for each set. (Otherwise, moves that
cannot occur may unnecessarily be identified as tabu.)

The importance of paired attribute moves is en-
hanced by the fact that a variety of methods for discrete
and nonlinear optimization are based on the use of
basis exchange operations, whose moves fall naturally
into this category. (We examine a mixed integer pro-
gramming method of this type in a later section.) An-
other area of application for such moves occurs in
"multiple choice" problems, where zero-one variables
belong to sets, and are governed by the provision that
exactly (or at most) one of the variables in a given set
can receive the value 1. (The introduction of zero-one
slack variables converts the "at most one" case to the
"exactly one" case.) The relevant paired attribute moves
for these problems take the form of setting x, = 1 and
xJ = 0, where x, and xJ belong to the same set.

A variety of moves that do not seem at first to be
paired attribute moves can be expressed in the context
of multiple choice problems. For example, moves that
allow variables to "jump" to nonadjacent values can be
viewed in this setting (conceiving the range of values
for a variable to be a multiple choice set). Operations
that transfer a job between machines, which appear to
involve several attributes (e.g., the identity of the job,
the machines affected by the transfer, and the sequence
position of the job on each machine), likewise can be
viewed as multiple choice moves. In this case, the
multiple choice set derives from the collection of posi-
tions and machines to which the job may be assigned,
since the job can be placed in at most one position on
at most one machine. In addition to their pervasiveness,
multiple choice moves have the attractive feature of
permitting an economical data structure for recording
tabu status in both the C-Sequence and Reverse Elim-
ination Methods, as will be shown.

Handling Paired Attribute Moves by the C-Sequence Method

As in the single attribute case, we will represent the
tabu list TL for paired attribute moves by

However, e(i) no longer refers to a move attribute
associated with iteration i. Instead, two attributes e(i)
and e(i + I), for i odd, are generated at each iteration
k (where k = (i + 1)/2). The value q is then twice the
value of the current iteration. By this convention the
sufficiency and necessity properties for TL can be de-
fined exactly as earlier, noting that solutions are asso-
ciated only with odd valued i indexes.

Similarly, this convention allows the active tabu
list, ATL, to be given the same representation as before.
The predecessor and successor arrays also operate with

no change. However, there is an important distinction
concerning the manner in which the attributes of TL
are processed. The identity of each block of attributes
that corresponds to a single move is maintained
throughout all operations, enabling C-Sequences to take
a more general form that depends on this identity. (This
fact may allow memory savings in certain settings.)
Correspondingly, the array iteration(e) continues to
refer to the iteration when element e was added to ATL,
thereby automatically identifying members of a com-
mon block by the shared value of location(e).

The more general form of the C-Sequence Method
that occurs for paired attribute moves may be charac-
terized as follows. Assume that e(q + 1) and e(q + 2)
constitute the block of elements newly added, and let e
denote each of these elements in succession. If 2 belongs
to ATL, and hence is canceled by e, then the resulting
C-Sequence ends with the predecessor of e, as before.
However, the C-Sequence does not necessarily begin
with the successor of 2, but rather with the element f
which is the other member of the block to which 2
belongs, unless f has previously been canceled. This
follows from the fact that the solution which was trans-
formed by the block consisting of 2 and f (i.e., by the
move associated with this block) cannot be repeated,
under the sufficiency condition, unless both attributes
of the block are canceled. The C-Sequence applicable
to the single attribute case, where each block consists
of just one element, also obeys this rule, since the
cancellation of an element eliminates "all members" of
the block and thus excludes it from the C-Sequence.

The newly added block of elements is not similarly
encompassed by the C-Sequence, since a C-Sequence
does not permissibly include an attribute which can-
cels another. However, the process for creating a C-
Sequence acquires a new feature, due to the ability to
consider the members of the added block in any order,
which allows either one of the new attributes to be
designated e(q + l), and the remaining attribute to be
designated e(q + 2). Different ordering yield different
outcomes, and it is possible to identify an ordering that
guarantees the best (least restrictive) collection of C-
Sequences from the alternatives available.

The rule to generate the preferable ordering is as
follows. Choose e(q + l) , the "first" member of the new
attribute pair, to be an attribute which does not cancel
an attribute currently recorded on ATL, or which can-
cels an attribute recorded earlier than the attribute
canceled by the other member of the new pair. If neither
member cancels an earlier element, or if both members
cancel elements from the same block, then their order
is immaterial. (In the latter case, regardless of order,
the dominance condition for C-Sequences results in
creating only one C-Sequence, which ends immediately
before the first member and hence excludes them both.)

Copyright O 2001 All Rights Reserved

16 Glover

This stipulation is accompanied by the requirement
that the tabu buffer must contain at least one attribute
of the last preceding move, i.e., the added elements
e(q + 1) and e(q + 2) are not permitted to cancel both
members of the immediately preceding block (consist-
ing of e(q) and e(q - I)).

The application of this rule for creating C-
Sequences is illustrated in Figure 6.

To determine tabu status by the application of the
preceding rule, null add and drop attributes are disre-
garded, and effectively dropped out of the C-Sequence
representation. It is possible on a given step for a C-
Sequence to be reduced to consist of one or two ele-
ments. Once a C-Sequence shrinks to a single element,
then the complement of this element is made tabu as
before, thus rendering any move that contains this
complement tabu. However, whenever a C-Sequence is
reduced to consist of two elements, the complements
of these elements are made tabu as a single pair, rather
than separately. (The tabu classification is unnecessary,
of course, if the pair does not correspond to an existing
move. For example, in an addldrop context it is possi-
ble that two remaining elements will both represent
"drop attributes," in which case no corresponding move
exists.)

The creation of tabu status can be handled for such
pairs by coding them as single entities-as, for example,

(1) 7 cancels an earlier element than 6, hence interchange 6 and ? to
put 3 first before cancellrng.

An. Before Cancellation

Newly Added

- -
New: endseq (7) = startseq (6) = 7 -

7

(2) Carry out remaining cancellation. (Uncancelled member of pair
starts new C-Sequence. Perform standakd update of startseq and
endseq.)

An. M t e r Cancellation

3 2

C-Sequence #1 I;,,.,.
C-Sequence Y 2

Figure 6. C-Sequence creation-paired attribute moves.

1 4

by a matrix representation M(r, s) which refers to
adding an element indexed r and dropping an element
indexed s, where M(r, s) is assigned a positive value for
a tabu pair. However, it is generally possible to do better
than this. The positive M(r, s) matrix entries are likely
to be a very small fraction of the total, and hence a
linked list may be maintained for each index r (or s)
that identifies its associated tabu pairs. Only a small
search is required to identify tabu status under this
scheme.

In the multiple choice context this approach can
be made additionally effective, and can be implemented
without a need for search. An addldrop pair indexed
by (r, s) can eliminate reference to the "drop index" s
and still recover its identity from knowledge of the
associated multiple choice set. Specifically, tabu status
can be established by a single list tabu(r), where tabu(r)
> 0 signifies that the move associated with the pair (r,
s) is tabu, and s is the unique element such that x, = 1
in the multiple choice set that contains x,.

For problems outside the multiple choice context,
an alternative approach can be employed to reduce
memory, based on assigning numerical "tabu values"
to different attributes recorded on ATL. A move is then
treated as tabu if the sum of the tabu values of its
attributes is at least I . Specifically, when a C-Sequence
shrinks to one element, the tabu value of the comple-
ment of this element is set equal to 1, assuring that any
move which contains this attribute will be tabu. By
extension, when a C-Sequence shrinks to two elements,
the tabu value of each complement is set to one-half.
This approach can render a larger number of moves
tabu and hence constitutes a more restrictive means of
creating tabu status than the approach that codes (r, s)
pairs as single entities.

6 6 3

Handling Paired Attribute Moves by the Reverse
Elimination Method

The Reverse Elimination Method allows a more rigor-
ous treatment of paired attribute moves, although at
the expense of greater computational effort. The TL list
is represented with the same conventions indicated for
the C-Sequence Method, where the paired attributes for
successive moves are recorded in blocks of the form
e(i), e(i + 1) for odd values of i.

The operations of adding and eliminating elements
occur by the same rules that apply to the situation
where each e(i) is created by a separate move. However,
during the reverse trace tabu status is only assigned at
the conclusion of examining both members of a block.
Null add and drop elements are not extracted from the
sequences (except as they cancel each other), but are an
integral part of the process. Further, tabu status applies
only to pairs of attributes defining specific moves, rather
than to single attributes, and does not depend on

Tabu Search. I1 17

whether both members of the pair belong to the same
block.

In particular, after every second element examined
in the reverse trace, the value of n is checked to see if
it equals 2. (This value will always be even at this
point.) If so, the two attributes that are linked by the
predecessor and successor arrays identify the comple-
mentary pair of attributes to be made tabu. A pair that
does not represent a move accessible to the current
solution can be disregarded.) In an add/drop context,
it is assured that one member of the tabu pair will
represent an element previously added and one will
represent an element previously dropped. The M(r, s)
matrix coding and the "numerical value" approach for
creating tabu status can be employed as with the C-
Sequence Method. Similarly, a single tabu(r) array can
be used to achieve an economical use of memory in
the multiple choice problem setting.

To apply a diversification strategy, pursuing the
goal of avoiding moves that belong to small sequences
(i.e., which separate the current solution from a pre-
vious solution by a small number of steps), the rules
become somewhat more complex than in the single
attribute case. In the add/drop context, every possible
pairing of "add" and "drop" attributes contained in the
sequence identifies a potential move whose reversal
should be avoided, provided the move currently exists.
(These two types of attributes will occur in equal num-
bers, in no specific order, and will respectively belong
and not belong to the current solution.) Thus a diver-
sification strategy based on the Reverse Elimination
Method will reasonably restrict attention to sequences
of only a few such attributes. This limitation may be
avoided, at the risk of penalizing more moves than
necessary, by a diversification strategy based on assign-
ing numerical tabu values to attributes.

A tabu buffer that automatically assigns a tabu
status to the complements of the tb most recent attri-
butes on TL also achieves a degree of "local diversifi-
cation." Such a buffer is probably more important for
paired attribute moves than for single attribute moves.
In the paired attribute case, there are often more paths
between solutions and more opportunities to follow a
trajectory that remains in the vicinity of a solution
recently visited. This can create a significant overlap in
the solutions implicitly evaluated by examining alter-
native moves. For example, in a multiple choice prob-
lem, if a tabu buffer is not used to encourage diversity,
a move that sets x, = 1 and x, = 0 may reasonably be
followed by a move that sets x, = 0 and xu = 1. Yet the
solutions reached by all moves of the latter type, for
u # s, were previously accessible by the moves that set
x, = 0 and xu = 1 on the preceding iteration. Unless
there is comvellinn reason to reconsider these alterna-

designate all such moves tabu. (When the associated
solutions should in fact be reconsidered, tabu search
typically allows these solutions to be encountered by a
more roundabout circuit, which may be shortened by
the use of appropriately designed aspiration criteria. We
note that structured move sets of the type discussed in
Section 2 can allow earlier alternatives to be visited
more directly than by such roundabout move se-
quences.)

The strategic oscillation approach characterized in
Section 7 of Part I likewise serves as a means of supple-
menting local diversification. The number of steps that
are selected in this approach for continuing beyond a
boundary, before permitting the search to return (and
thereby to meet and cross the boundary from the op-
posite direction), will generally have a direct effect on
the degree of diversification. An appropriate depth for
penetrating such boundaries is likely to be greater for
paired attribute moves than for single attribute moves,
for the reasons already suggested.

Apart from the diversification issue, the implemen-
tation of the Reverse Elimination Method for paired
attribute moves is a straightforward adaptation of the
form of the method for single attribute moves, and the
implications of the sufficiency and necessity conditions
in avoiding duplicate solutions are the same as in the
simpler case.

An illustration of the Reverse Elimination Method
for paired attribute moves is given in Figure 7. The
Residual C-Sequences generated in this example dis-
close that the add and drop attributes do not necessarily

paired Attribute wolree

TL Lis t Code

Reverse B l M n a t i o n Trace

tives, a localhiver~ification policy would appropriately Figure 7. Reverse elimination method.

Copyright O 2001 All Rights Reserved

1 , i-1

18, 17

16, 15

14, 13

12, 11

10, 9

8. 7

6 , 5

4 , 3

2, 1

Resldual C-Sequence

6, 5
1, 5, 6 , 5

4 , 1, j, 5

4 , 3
i 4

5, a , 7, 4

8 , a , 7, 4

8 , a

n

2

4

4

2

2

4

4

2

0

Tabu Status

Tabu (2, 6)

Tabu (3 , i)
T a b u (7 . i)

T a b u (9 , i)

Duplication

18 Glover

alternate as they do on the original TL list, and that
tabu moves may derive their attributes from different
blocks of TL. A duplicated solution is also illustrated,
depicting the type of situation that may occur when all
currently accessible moves are tabu, or when TL is
traced to greater depths on some iterations than on
others.

1.6. Extensions to Multiattribute Moves

Optimization procedures sometimes employ moves
that involve more than two attributes. For example, it
is common in the traveling salesmen setting to employ
"four-attribute moves" that drop two edges and add
two others. The ideas we have presented for handling
paired attribute moves can be extended more generally
to multiattribute moves, provided a few special condi-
tions are heeded.

For both the C-Sequence and Reverse Elimination
Methods, the TL list does not alter its representation,
although the blocks of attributes that correspond to
moves now consist of an increased number of elements.
In the C-Sequence approach, when an attribute of a
newly added block cancels an attribute of an earlier
block, all uncanceled elements in the earlier block are
included in the C-Sequence that results. The preferred
ordering of the attributes of the newly added block
arises by choosing attributes that do not cancel earlier
attributes on ATL to appear first. Then, of the attributes
remaining, those which cancel earlier attributes on ATL
appear before those that cancel later attributes on ATL.
Numerical tabu values may appropriately be employed
by assigning a value of l/k to each attribute in a C-
Sequence of size k, restricting attention to C-Sequences
that do not exceed the size of a block.

The Reverse Elimination Procedure examines all
members of each successive block before considering
the assignment of tabu status. A tabu move is identified
when the linked elements are exactly equal in number
to the size of a block. These elements can be fewer in
number without implying that a move should be iden-
tified as tabu. (An exception may occur if a type of
move that contains such a smaller number of attributes
is admissible.)

Except for these changes, the multiattribute setting
is handled by the same data structures and processing
rules previously described.

1.7. lntensification/Diversification Tradeoffs and
Frequency-Based Tabu List Management

In contrast to the approaches of the preceding sections,
which organize all attributes on a single tabu list, there
are occasions where the use of different tabu lists for
different types of attributes is warranted. Multiple tabu
lists, which can be based on the simpler structures that

classify the complements of all elements on the list tabu
(instead of merely potentially tabu), give an opportunity
to exploit tradeoffs between intensifying and diversify-
ing the search. Intensification strategies, which reinforce
attribute combinations characteristic of a particular
region (or combinations historically found good), seem
inherently opposed to diversification strategies, which
seek to drive the search into new regions. However,
these two strategies are not always mutually exclusive,
and sometimes can be handled more effectively by
seeking a balance, rather than an alternating domi-
nance, between the two.

A notable illustration of this occurs in the setting
of add/drop moves, as in the edge swapping moves for
transforming one tree into another or one traveling
salesman tour into another (in the latter case, adding
and dropping pairs of edges at a time). Experimental
evidence suggests that it is better to maintain a tabu list
to prevent dropped elements from being added back
than it is to maintain such a list to prevent added
elements from being dropped. Such findings also sug-
gest that the best sizes for the first type of list should be
somewhat smaller than for the second.[201 Intuition
supports both of these outcomes. The difference in tabu
list sizes derives from the fact that the number of edges
that lie in a tree (or tour) is typically much smaller than
the number that lie outside. Under such circumstances,
a tabu condition that locks an edge into a tree is much
more restrictive than one that keeps an edge out of the
tree, and a list that accomplishes the former result
should be smaller than one that accomplishes the latter
result. At the same time, the general superiority of the
list that prevents dropped elements from being added
back seems reasonable from the standpoint of flexibil-
ity. Although such a list may be larger, and therefore
render more elements tabu, it still generally allows a
larger number of moves to be constructed from non-
tabu elements, giving the search more degree of free-
dom. (Of course, these arguments are not relevant to
the more advanced dynamic tabu list strategies.)

Additional useful insight into the tradeoffs between
the two types of lists can be gained by considering their
effects on intensifying and diversifying the search. Two
perspectives appear relevant. From the first perspective,
a restriction that locks an edge into a tree has an
intensification role by focusing the search in the sub-
space where the tabu portion of the tree remains rela-
tively invariant (changing by one edge each iteration),
while a tabu restriction that keeps a dropped edge from
being added back to a tree has a diversification role by
assuring that new edges will thereby be added to the
tree. From the second perspective, locking an edge into
a tree also has a diversification role, because it assures
that edges of the tree which are not tabu will change

Tabu Search. 11 19

their identities, while preventing a dropped edge from
being added back has an intensification role by limiting
the search to the moves that incorporate the remaining
non-tree edges.

This complementarity of the intensification and
diversification strategies suggests the value of not simply
using a tabu list for a single type of attribute (when
simpler lists are used), but of maintaining multiple lists
whose sizes reflect the relative restrictiveness of their
associated tabu conditions (as influenced by the relative
number of choices available in different categories; e.g.,
non-tree versus tree edges). To date, applications in-
volving multiple tabu lists have focused on creating
different lists for different components or stages of
search, or for preventing repetitions as well as reversals.
By contrast, the use of multiple lists that incorporate
different types of attributes has been largely unexplored,
and the issue of exploiting tradeoffs between intensifi-
cation and diversification by this means remains open
to investigation.

Such considerations, which invite a closer look at
the standard tabu list structures, also invite examination
of different types of dynamic strategies that maintain
these structures. Accordingly, to conclude the treatment
of dynamic tabu list strategies, we propose two alter-
native procedures that rely on the organization and
processing techniques of standard tabu list implemen-
tations, but which introduce frequency criteria for de-
termining the current tabu status of attributes on the
list. In spirit, these procedures are related to those
of probabilistic tabu search described in Section 9 of
Part I, and the second procedure provides a natural
accompaniment to a probabilistic tabu search
approach.

To describe the first frequency-based method, con- -
sider the list ATL, which consists of the complements
of the elements of ATL (hence consists of those ele-
ments that are potentially tabu in the C-Sequence
Method). We may either consider the full set of such
complements, or more - restrictively, by the use of mul-
tiple tabu lists, allow ATL to represent a subset that
corresponds to attributes of a particular - classification.
In the latter case, more than one such ATL may be
handled simultaneously, selecting appropriate - parame-
ters for each. The basic idea is to partition ATL into
groups, bracketed according to the ages of their mem-
bers, where tabu status for younger groups is main-
tained more stringently than for older groups. For
example, the first group may consist of the 3 youngest -
elements of ATL, which are required to maintain their
tabu status without exception, the second - group may
consist of the next 5 youngest elements of ATL, which
are strongly but not invariably required to maintain
their tabu status, and so on. (These divisions may be

based on iterations rather than numbers of elements.
For example, a group may consist of elements that were
added between h and k iterations ago, and hence which
may contain fewer than k + 1 - h elements as cancel-
lations occur.) A common approach for accomplishing
such a progressive relaxation of tabu status is to apply
successively smaller penalties to the elements in older
groups, which often produces an effect similar to that
of making all penalties uniform. By contrast, the ap-
proach adopted here allows elements of the groups to
fully escape their tabu status, according to certain fre-
quencies that increase with the age of the groups. Thus,
rather than being subjected to diminishing penalties,
elements are periodically allowed to be chosen freely,
which requires the determination of an appropriate
form of frequency measure and an associated means
for implementing it.

The Tabu Cycle Method

The first of the two frequency-based procedures we
propose is based on the use of iteration intervals called
tabu cycles, which are made smaller for older groups
than for younger groups. Specifically, if Group k has a
tabu cycle of TC(k) iterations, then at each occurrence
of this many iterations, on average, the elements of
Group k escape their tabu status and are free to be
chosen. To illustrate, suppose there are three groups
(each older than the preceding), whose tabu cycles are
4, 3 and 2. Then, roughly speaking, an element could
be selected from the first group once in every 4 itera-
tions, from the second group once in every 3 iterations
and the third group once in every 2 iterations. (A buffer
group whose elements never escape tabu status has an
implicit tabu cycle of infinity.)

However, the process is not quite as simple as the
illustration suggests. By selecting - elements in the man-
ner indicated, an element of ATL could escape its tabu
status on virtually every iteration: e.g., by picking an
element of Group 3 on iteration 2, an element of Group
2 on iteration 3, then an element either of Group 3 or
Group 1 on iteration 4, and so on. Moreover, there is
no clear provision of how to handle the situation where
no element is chosen from Group k for a duration of
several tabu cycles, given that the goal is to allow an
element to be selected, on average, once every cycle.

To take care of the preceding considerations, we
introduce a cycle count, CC(k), for Group k. Initially,
CC(k) starts at 1 and is incremented by 1 at every
iteration. Each group has three states, OFF, ON and
FREE. We define Group k to be:

OFF if CC(k) < TC(k)
ON if CC(k) a TC(k)
FREE if Group h is ON for all h a k.

Copyright O 2001 All Rights Reserved

20 Glover

An element is allowed to be chosen from Group k only
if it is FREE, hence only if its cycle count equals or
exceeds its tabu cycle value (qualifying the group as
ON), and only if this same condition holds for all older
groups. The ON and FREE states are equivalent for the
oldest group. As implied by our earlier discussion, we
assume TC(k) < TC(k - 1) for all k > 1.

The definition of the FREE state derives from the
fact that each CC(k) value should appropriately be
interpreted as applying to the union of Group k with
all groups younger than itself. Accordingly, once an
element is selected from Group k, the cycle count CC(k)
is re-set by the operation

CC(h) := CC(h) - TC(h) for all h 3 k,

whereupon the cycle counts are incremented again by
1 at each succeeding iteration. By this rule, if Group k
becomes FREE as soon as it is ON, and if an element
is chosen from Group k at that point, then CC(k) is
re-set to 0 (which gives it a value 1 the iteration after it
receives the value TC(k)). On the other hand, if no
element is selected from Group k (or any younger
group) until CC(k) is somewhere between TC(k) and
2TC(k) iterations, the rule for re-setting CC(k) assures
that Group k will again become ON when the original
(unadjusted) cycle count reaches 2TC(k) itera-
tions. Thus, on the average, this allows the possibility
of choosing an element from Group k once during
every TC(k) iteration.

This process is illustrated in Figure 8. An additional
buffer group ("Group 0") may be assumed to be in-
cluded, although not shown, whose elements are never
allowed to escape tabu status, hence which is always
OFF. For convenience, a sequence of iterations is
shown starting from a point where all cycle counts have
been re-set to 1 (iteration 6 1 in the illustration). Since
a group is OFF until its cycle count reaches its tabu
cycle value, each group begins in the OFF state. A
group that is both ON and FREE is shown as FREE,
and a FREE group from which an element is selected
is indicated by an asterisk.

Figure 8 discloses how the choice of an element
from a FREE group affects the cycle counts, and hence
the states, of each group. Thus, for example, on iteration
64 the choice of an element from Group 2 reduces the
cycle counts of both Group 2 and Group 3 by the rule

Hence on iteration 65, where these counts are again
incremented by 1, their values are shown as CC(2) = 2
and CC(3) = 1.

There are a few additional features of this process
to emphasize. First the tabu cycles do not have to be
integers. A value such as TC(k) = 3.5 can be selected

Figurel. Tabu cycle method illustrated. (*New element is
selected from the indicated group.)

to allow the method, on average, to choose an element
from Group k once every 3.5 iterations (hence twice
every 7 iterations). The rules remain exactly as speci-
fied. A slight elaboration of the rules is required, how-
ever, to handle a situation that may occur if no element
is selected from Group k or any younger group for a
relatively large number of iterations. In this case, CC(k)
may attain a value which is several times that of TC(k),
causing Group k to remain continuously ON, and
hence potentially FREE, until a sufficient number of
its elements (or of younger groups) are chosen to bring
its value back below TC(k). This leads to the possibility
that a series of iterations will occur where elements are
repeatedly selected from Group k. (The frequency of
selection will be limited however, by the cycle count
values of older groups. Hence the greatest risk of inap-
propriate behavior occurs when elements are selected -
entirely outside of ATL for a fairly high number of
iterations.) Such a "statistically exceptional" outcome
can be guarded against by bounding the value of CC(k),
preventing CC(k) from being incremented once it
reaches a specified multiple of TC(k)-for example,
upon reaching some fraction f of the number of ele-
ments assigned to Group k. Similarly, CC(k) should
initially be bounded by (fy + l)TC(k) until Group k
has acquired y elements. (The multiple fy + I allows
Group k to be ON, and hence permits elements to be
selected from younger groups, during the initial period
where y = 0.) It should be noted for the case of multiple
tabu lists that the definition of "iteration" may need to
be varied for different lists, if not all types of attributes
are present in each move.

The Conditional Probability Method

The second frequency-based tabu list approach has an
orientation similar to the first, but chooses elements
from different groups by establishing a probability P(k)
that Group k will be FREE on a given iteration. The
probability assigned to Group k may be viewed concep-

C m t 0 7n111 All W t 4 R P ~ P ~ , P ~

Tabu Search. I1 21

tually as the inverse of the tabu cycle value TC(k), i.e.,
P(k) = l/TC(k). As with the treatment of cycle counts
in the Tabu Cycle Method, the appropriate treatment
of probabilities in the Conditional Probability Method
is based on interpreting each P(k) as applicable to the
union of Group k with all groups younger than itself.
Also, Group k can only be FREE by implicitly requiring
all older groups likewise to be FREE.

Under the assumption P(k) > P(k - 1) for all k >
1, we generate a conditional probability, CP(k), as a
means of determining whether Group k can be desig-
nated as FREE. (We may again suppose the existence
of a buffer, Group 0, which admits no choice of its
elements, hence for which P(0) = 0.) The rule for
generating CP(k) is as follows:

P(k) - P(k - 1)
CP(k) = for k > 1.

1 - P (k - 1)

Then at each iteration, the process for determining the
state of each group starts at k = 1, and proceeds to
larger values in succession, designating Group k to be
FREE with probability CP(k). If Group k is designated
FREE, then all groups with larger k values are also
designated FREE and the process stops. Otherwise, the
next larger k is examined until all groups have been
considered.

The derivation of CP(k) is based on the following

will generally fall below P(k), without any compensat-
ing increase in freedom to choose elements from these
groups (which would potentially allow the average per
iteration to come closer to P(k)). Moreover, the same
result will occur if for some number of iterations no
element is selected from a group as young as Group k.

To handle this, the original P(k) values may be
replaced by "substitute probabilities" P*(k) in the
determination of CP(k). These substitute probabilities
make use of the same cycle count values CC(k) used in
the Tabu Cycle Method, invoking the relationship
TC(k) = l/P(k). To begin, P*(k) = P(k) until CC(k)
exceeds TC(k) (bounding CC(k) in early iterations
as specified previously). Then P*(k) is allowed to
exceed P(k) as an increasing function of the quantity
CC(k)/TC(k). In contrast to the Tabu Cycle Method,
a negative value can result for CC(k) in this ap-
proach, as a result of the update CC(k) := CC(k) -
TC(k) (which occurs whenever an element is selected
from a Group h, for h =S k).

A variation with an interesting interpretation re-
sets the cycle count CC(k) to 0 instead of decrementing
it by TC(k). Then CC(k) counts consecutive iterations
where no element is chosen from any Group h, h 6 k,
an event which may be (loosely) construed as occuning
with probability (1 - P(k))', for r = CC(k). Then the
substitute probability P*(k) on the following iteration
may be established by setting

argument. By interpretation, P(k) represents the prob- P*(k) = 1 - (1 - P(k))'+'
ability that Group k or some younger group is the first (Note this gives P*(k) = P(k) when r = 0.)
FREE group, while CP(k) designates the probability Finally, to provide a valid basis for computing
that Group k is the first FREE group but no younger CP(k), we require P*(k) 2 P*(k - 1) for k > 1. Hence,
group is FREE- The CP(l) = P(l) is appro- beginning with the largest k and working backward, we
priate since it is not possible for any group younger

bC L
than Group 1 to be FREE. In general, for larger values
of k, the event that Group k or a younger group is P*(k - 1) := Minimum(P*(k - I), P*(k)).
FREE derives from the two exclusive events (assumed
independent) where either (1) Group k - 1 or some
younger group is the first FREE group, which occurs
with probability P(k - l), or (2) this is not the case and
Group k is the first FREE group. This gives rise to the
formula

and solving for CP(k) gives the value specified.
Consideration of the rationale underlying the Tabu

Cycle Method described earlier, however, shows that
an appropriate characterization of the CP(k) probabil-
ities is not yet complete. Designating Group k to be
FREE does not imply an element will be selected from
this group. For some number of iterations, elements -
outside of ATL may be accepted regardless of the FREE -
state of groups of elements within ATL. When this
occurs, the expected number of elements per iteration
chosen from groups no older than any given Group k

The substitute probability approach has the advantage
of increasing the probability of choosing elements of
neglected groups as long as they remain neglected. The
variation that re-sets CC(k) = 0 on the update step also
automatically avoids the creation of inappropriately
high probabilities for the type of situation handled in
the Tabu Cycle Method by capping CC(k).

By assigning numerical values to tabu attributes,
with an associated limit on the sum (or other function)
of these values to determine the tabu status of a move,
both the Tabu Cycle Method and the Conditional Prob-
ability Method can be applied to multiple attribute
moves as readily as to single attribute moves.

2. Structured Move Sets and Staged Tabu Search

The dynamic tabu list strategies described in the pre-
ceding sections offer a variety of opportunities for
tailoring methods to particular problem settings by

Copyright O 2001 All Rights Reserved

22 Glover

manipulating their parameters for escaping (or impos-
ing) tabu status. Beyond this, however, it is possible to
structure the moves treated by these processes in an
adaptive manner. This offers a means of directly visiting
solution states which are not contiguous by the original
move definitions.

It is worth noting that procedures for solving short-
est path problems already induce a structure, or an
implicit progression, for examining solutions associated
with nodes of a digraph, such as the digraph G in
Section 5 of Part I, which is a function of the search
itself. This induced structure supersedes the structure
given by initially defining S(x) as the set of moves to
nodes y such that (x, y) is an arc of the digraph. Building
on this observation, we now indicate a class of methods
for creating a similar type of induced structure for
moves employed by tabu search, based on generalizing
a class of methods described in [15] for finding shortest
paths from an origin node to all other nodes of a
digraph. In its origional form the approach uses two
sets, NOW and NEXT, to which we add a third set,
denoted TABU.

TABU SEARCH WITH S(x) IMPLICITLY
RESTRUCTURED

1. Initialization. Start with sets NEXT and TABU
empty, and k = 0. Let the set NOW consist of a
selected starting solution x* E X.

2. Choose a "best" non-tabu element from NOW.
If NOW - TABU is empty, go to Step 4.

Otherwise, set k: = k + 1 and choose xk =
OPTIMUM(x: x E NOW - TABU), and
remove xk from NOW. If c(xk) < c(x*), let x*:
= xk.

3. Apply a Screening Test for Partitioning. For
each s(xk), s E s(xk), such that s(xk) is not
dominated by an element of NOW or NEXT: if
s(xk) is dominated by an element of TABU, add
s(xk) to TABU; otherwise add s(xk) either to
NOW or to NEXT, according to the outcome of
applying a screening test to (s, xk), and delete
from NOW and NEXT any elements
determined to be dominated by s(xk).

4. Test for Termination. If NOW and NEXT are
both empty, or k exceeds an iteration cut off
level, stop. Otherwise, if NOW # 0, update
TABU and Return to Step 2, while if NOW = 0
proceed to Step 5.

5. Apply a Screening Test for Repartitioning.
Choose a nonempty subset of NEXT by
applying a repartitioning screening test and
transfer elements of this subset from NEXT to
NOW. Then return to Step 2.

Several observations apply to this procedure. The
screening tests for partitioning and repartitioning are
decision points of the method designed to maintain the
most attractive solutions in the set NOW. The present
approach maintains access to moves from different sets
S(x) as a means of redefining the set of moves consid-
ered currently available (those in NOW). A candidate
list procedure could be superimposed on this approach
to narrow the alternatives, but its function is to reduce
the effort to identify good current choices as contrasted
with restructuring the set currently available.

In the shortest path setting,[15] the tests to deter-
mine membership in NOW constitute evaluation
thresholds which, if supplemented by those of a candi-
date list procedure, would represent a higher level of
screening to extract the elite candidate list members for
inclusion in NOW (in some instances, excluding all
candidate list members, and relegating them instead to
NEXT). The indicated handling of dominated solutions
of course depends on procedures capable of identifying
such solutions. For shortest path problems, the identi-
fication is extremely easy: a solution associated with a
given node automatically is interpreted to dominate all
subsequent solutions associated with the same node
that have a c(x) value at least as large.

We further allow the possibility of attaching eval-
uation labels to elements that are added to NEXT at
Step 3 as a means of biasing them against being trans-
ferred from NEXT to NOW at Step 5. This means of
transmitting information from the decision rule at Step
3 to the decision rule at Step 5 encompasses the device
of creating a special FLUNK set of the form specified
in [15].

The sets NOW, NEXT and TABU are depicted for
notational simplicity as containing only solutions x E
X, though in fact in most cases they will be more
complex. Allowing the set TABU to correspond to the
set T, interpreted as in the latter part of Section 4 of
Part I, TABU may be construed to consist of pairs (s,
x), recorded implicitly by reference to solution attri-
butes from which specific solutions can be recon-
structed. In general, it should be kept in mind that the
foregoing procedure uses the set notation for NOW,
NEXT and TABU as a way of simplifying the reference
to other underlying sets, of variable specification, that
may be used to generate and process solutions from a
record of designated attributes.

The use of simplified references to sets occurs
naturally (in a less general form) in the solution of
shortest path problems. The sets NOW and NEXT in
this case are sets of nodes, not solutions, where a
solution consists of a node, a distance label, and a path
whose identity requires processing to determine. How-
ever, the data structure simplification that results by
storing nodes on NOW and NEXT nevertheless makes

Tabu Search. 11 23

it possible to access just those solutions that are not
explicitly dominated by others thus far discovered.
(More precisely, the current distance and predecessor
labels attached to the node provide access to the essen-
tial components of the solution needed for processing.
Also, strictly speaking, a solution can be dominated
implicitly, and the record for recovering its associated
path may be inaccurate, unless distance labels are kept
sharp.)

The use of the set TABU provides one of the major
departures of the procedure from the shortest path
setting. As always the attributes and restrictions used to
define tabu status can strongly affect the way the
method functions. Recall that T (and hence TABU)
may involve multiple sets of different lengths, or ten-
ures. In contexts where a t value is allowed to grow with
k, the effect can be to impart a permanent tenure to
moves whose attributes are recorded on a tabu set; i.e.,
an element once added to such a set will not be re-
moved. Elements permanently excluded from consid-
eration in this manner are assumed to be extracted
from NOW and NEXT in checking whether these sets
are empty at Step 4.

Finally, in the simple case where NOW, NEXT
and TABU are processed strictly as collections of solu-
tions, and where the update of TABU at Step 4 consists
of adding xk (and preferably solutions dominated by
solutions s(xk)) to TABU with a permanent tenure,
then the results of [15] provide a convergence guarantee
for this setting. In particular, under the stated assump-
tions an optimal solution will be found in a finite
number of steps, provided the associated graph is finite
and contains a path from the starting solution to an
optimal solution.

Staged Search Processes

In some types of search environments the sets S(x) of
moves associated with solutions x in X are structured
in a way that naturally partitions the search into levels,
or stages. When this occurs, it can be appropriate to
apply tabu search in corresponding stages, with separate
or nested tabu lists applicable to separate stages. In the
case where the stages establish a strict hierarchy, it can
further be appropriate to purge the list for a given stage
when a predecessor stage is visited.

A simple example involving a strict hierarchy of
stages occurs where the digraph G characterized in
Section 5 of Part I corresponds to a tree, disregarding
the simple cycles produced by pairs of arcs (i, J) and
(j, i). We illustrate an instance of this employing a
structure closely analogous to that produced by branch
and bound, showing the relevance of creating staged
tabu lists in parallel with stages induced by S(x). Let X
be the set of vectors x whose components x,, J < n, take
the values #, 0, 1, . . . , U,, where x, = # has the

interpretation that x, is not assigned a value. (It is
natural to map the # values of a vector into provisional
"real" values, as by solving a problem relaxation.)

Then a method for defining S(x) that results in a
staged representation may be expressed as follows. Stage
0 occurs when all x, = #, and is the starting point for
generating the solution sequence. Stage 1 occurs when
x, # # but all other x, = #, and in general, Stage p
occurs when x, # # if j s p and x, = # if j 7 p. All
moves can be represented as ordered pairs of the form
(x,', #) and (#, x,'), which have the interpretation that
x, changes its value, respectively, from # to x,' and
from x,' to #. For any x' that satisfies the definition of
a Stage p vector, S(x') is the set of vectors x " derived
from x' either by a (x,', #) move or by a (#, x," + 1)
move, where x," + 1 is any value in the acceptable
range for x, + I other than #. (The (x,', #) move is
disallowed if p = 0 and the (#, x," + 1) move is
disallowed i fp = n.)

A tabu list for Stage p, adopting the policy of
preventing move reversals, will therefore operate in the
following manner. Upon making a Stage p - 1 move
(#, x/), the reverse move (x,", #) is entered on the tabu
list for Stage p. Similarly, on making a Stage p move
(x,', #), the reverse move (#, x,') will go on the tabu
list for Stage p - 1. (In this latter case, having transi-
tioned from Stage p to a lower stage, the tabu list for
Stage p is purged.) By this scheme, choosing a tabu list
size for Stage p greater than or equal to the number of
Stage p moves, it is easy to show that tabu search will
do a depth first search of the graph of solutions created
by the structure of S(x).

The small amount of memory and straightforward
processing required by this staged tabu search scheme
underscores an important point. In the absence of
creating separate lists that match the stages induced by
the structure of S(x), a simple form of tabu search will
still do a depth first search of the tree, but in this case
moves and attributes generally must be characterized
in a manner that involves a greater amount of memory.
For example, one such scheme that assures an exhaus-
tive search of the tree results by allowing the length of
the tabu list to grow with the number of iterations and
by defining tabu restrictions in a manner that prohibits
exactly those moves that lead to a solution previously
visited. While this is easily done in the present context,
the increased overhead for memory is considerable, and
hence a procedure that matches lists to stages is highly
desirable.

3. Tabu Search and Mixed Integer Programming

Three principal methods for mixed integer program-
ming (MIP) problems based on tabu search will be
described in this section. The first two fall into the

Copyright O 2001 All Rights Reserved

24 Glover

framework of Sections 2-4 of Part I, while the third
involves a modification of this framework which entails
changing the definition of a move.

We define the MIP problem by writing x in the
form x = (xI, x,), where XI and x, denote the vectors of
integer and continuous variables, and by identifying
the set X for (P) by

X = {x: A,x, + Acxc = b, x 3 0 and xl integer]

The objective function c(x) is assumed to be linear,
although ways to get around this assumption will be
evident from the context.

For convenience in describing the following MIP
methods, we defer consideration of aspiration levels
and of intermediate- and long-term memory functions
until the end, where prescriptions relevant to all pro-
cedures will be indicated.

MIP Method 1

The first method is based on specifying the form of a
move s to be given by

where x," = sl(xl') takes the form

and x," is an optimal solution to the linear program

(LP) Minimize c(xlU, x,): 4 x ,

The set S(x ') applicable to the trial solution x' consists
of those moves such that XI" = xI' +. e, does not violate
a lower or upper bound for the variable x,.

By these conventions, a tabu search method for
the MIP problem can make use either of the types of
tabu lists described in Part I or of the dynamic tabu
lists of Section 1, applied in this case to single attribute
moves. Such lists can thus be maintained by recording
the index j of the integer variable whose value was
changed on given iteration and whether the change was
an increment or a decrement. (A vector whose com-
ponents are associated with the components of XI can
be used to facilitate the checking of tabu status.)

Given a tabu list that implicitly defines the set T
of tabu moves, the key to characterizing this procedure
is to identify an appropriate form of the OPTIMUM
function for evaluating the move to be selected on the
current iteration. Suppose x ' denotes the current solu-
tion, and hence the next solution x" is given by

x" = OPTIMUM(s(x '): s E S(x ') - T).

Then the "natural" choice for OPTIMUM, which se-
lects x" as the vector that minimizes c(s(xl)) for s E

S(x ') - T, can be computationally expensive to imple-
ment in the MIP setting, since it requires solving (LP)
to find x," for each xl" = xl' k e,. Consequently, it is
appropriate to use an easily computed approximation
to an optimum LP solution to provide a proxy for the
minimum c(s(x')) value. This can derive, for example,
from a "partial" dual postoptimizing pivot applied to
the linear program solved on the preceding iteration of
the method, or from other more complex postopti-
mizing penalties as standardly computed in branch and
bound.[6. 16,28.32.33.371

Let v(x,) denote the function that yields such an
approximation, noting that (LP) depends only on the
vector xln, and that x," is computed without reference
to x,'. Then x" may be determined from OPTIMUM
in two steps. The first examines the integer vectors
XI" = XI' + eJ and xl" = xl' - e, for appropriate choices
ofj, excluding alternatives ruled out by the tabu list T,
and chooses the particular xl" that minimizes v(xl).
This step determines the move s to be chosen. The
second step completes the move by solving (LP) to
determine x," and c(x").

The choices made by such an approach can lead
to surprises as a result of selecting a move that is not
attractive when its consequences are identified fully
(upon at last solving the linear program that discloses
the true value of c(xW)). An improved form of OPTI-
MUM would therefore use v(xI) as a screening device
to provide candidate moves that are then examined in
greater detail before one is selected, e.g., picking the
first candidate that passes a second screening test.

The final element of this approach is to endow the
objective function c(x) with the ability to take on values
that reflect varying degrees of infeasibility, since in
many MIP problems an XI vector that yields a feasible
starting solution may not be known and, in addition,
subsequent moves by tabu search may lead from the
feasible region into the infeasible region. By the usual
convention, an infeasible solution is interpreted to yield
a value of infinity for c(x). Thus, if this convention is
maintained, the problem should be modified to encom-
pass a larger feasible region with penalties for lying
outside the true region of interest. This can be accom-
plished by a goal programming formulation, or more
generally by introducing bounded variables to allow
increasing constraint violations at increasing cost. Spe-
cialized LP methods exist for solving such problems
efficiently.

This application of tabu search to the MIP problem
can take a variety of specific forms, depending on the
way the original problem is altered to penalize infeasi-
bilities and on the choice of the OPTIMUM function
(via the function v(xl)). An appealing feature of this
approach is that once these choices are made, it is

Copyright O 2001All Rights Reserved

Tabu Search. I1 25

relatively straightforward to implement. It is also able
to incorporate other types of moves, such as the paired
attribute moves that arise in multiple choice problems,
where incrementing a given variable to the value 1
entails that all other variables in its multiple choice set
receive the value 0.

MIP Method 2
The second tabu search method for the MIP problem
will first be described in the context where all integer
variables are zero-one variables. For this approach we
assume that X does not include the stipulation that x,
is integer, but that the constraints defining X include
the bound x, d 1 for integer variables. Correspondingly,
we assume c(x) penalizes points at which such variables
are not 0 or 1, as by a weighted component that is 0 at
x, = 0 and x, = 1, and that attains a unique local, hence
global, maximum at x, = '/2. (For example, the product
x,(l - x,), raised to any positive power, provides such
a component. A variety of alternative functions that
can be used in this context are proposed in [5] .) The
function c(x) therefore is transformed to be nonlinear
for this case, but as will be seen this poses no difficulty.
Indeed, different forms of penalty functions can be used
at different stages of the search.

The approach uses the fact that an optimal zero-
one MIP solution can be found at one of the extreme
points of X, and hence the search for such a solution
can be undertaken by a method that pivots from one
extreme point to the next, like the simplex algorithm.
(Such pivots include the operation of moving a non-
basic zero-one variable x, from one of its bounds to
another, or equivalently of replacing x, by 1 - x,.
Consequently, one of the better known heuristics in
this setting has been called the "pivot and complement"
method.C2')

The moves of S, therefore, need only to be defined
on the extreme points of X, and for each of these, s(x)
is an adjacent extreme point of x for each s in S(x).
The implementation of tabu search in this setting com-
pares favorably with that of MIP Method 1, and is
simpler in some respects, because the moves do not
require solving an associated linear program and OP-
TIMUM does not require reference to an approximat-
ing function v(xI). Thus, in particular, for any extreme
point x ' in X, we may stipulate that the choice

selects X" to be an extreme point adjacent to x ' such
that

C(X ") = Min(c(s(x ')): s E S(x ') - T).

Allowing c(x) and S(x) to vary according to availability
of certain types of improving moves, such an evaluation

includes that of the pivot and complement heuristic.
However, it is important in the present context not to
exclude a class of moves from S(x) simply because they
are nonimproving, but to let the tabu search framework
decide an appropriate move from the larger set.

To complete the specification of the present MIP
method, we need only to identify the form of T. By
reference to the goal of preventing a move reversal, or
more broadly, of preventing a return to an extreme
point from which a move was initiated, T may be
defined in the simpler types of tabu list approaches to
consist of moves that would make s (x f) an extreme
point reached on one of the preceding t iterations. An
attribute of previous moves that is easily identified and
recorded is the pair of nonbasic and basic variables
whose exchange led from one previous extreme point
to the next-i.e., this attribute is a "composite" of the
two attributes that arise in a paired attribute represen-
tation of the exchange move. Thus, employing such a
composite attribute, T could be maintained in the form
of a related list

T' = {(p, q): Nonbasic variable x, exchanged with basic

variable x, on iteration h > k - t 1.

Then a move would be classed tabu if it involved an
exchange, in reverse, of nonbasic x, for basic x, for
some (p, q) E T'.

It is interesting to note that such a characterization
of T, while seeming to be similar to a paired attribute
representation, is in fact quite different, and exemplifies
a case where preventing a move reversal may not pre-
vent returning to a preceding solution. For example, a
sequence of pivots yielding T' = ((1, 2), (2, 3), (3, 1))
identifies a cycle that the use of T' is unable to prevent.
(If T' were organized to prevent the execution of orig-
inal moves as well as move reversals, as by specifying
T to be the set described in Section 2 of Part I that
consists of the union of two sets T, and T,, then
traversing such a cycle would not be followed by a
repetition of the same moves.) Among the simpler types
of tabu list approaches, one that is appropriately effec-
tive, and easier to process, is to designate the set T' by

T' = (q : basic variable x,

became nonbasic on iteration h > k - t) .

The tabu classification applies in this case to those
moves that allow x, to enter the basis for some q E T'.
Such a list T' can be maintained for the bounded
variable simplex method by interpreting a variable
which is nonbasic at its upper bound to be basic, with
its complementary variable nonbasic.

Copyright O 2001 All Rights Reserved

26 Glover

A possible alternative for T', is given by

T" = (p: nonbasic variable x,

bound methods, and underly the derivation of a variety
of cutting planes for the MIP

Tabu search acquires features in this setting that
became basic on iteration h > k - t i . are similar in concept, but different in detail,-from

However, T" generally is more restrictive (and probably
less desirable) than T' since the number of nonbasic
variables typically is larger than the number of basic
variables and, moreover, the use of T" to prevent a
basic variable from becoming nonbasic could prevent
more than one nonbasic variable from becoming basic.
An appropriate value of t, in any event, would be
different for T" than for T '. The relative performance
of these simpler tabu list approaches by comparison
to the C-Sequence and Reverse Elimination Methods
in this MIP setting provides an interesting area for
investigation.

MIP Method 2 for zero-one problems can be
extended to the general MIP problem by reference to
pseudo-extreme points which are reached by truncated
pivots. We define a pseudo-extreme point, recursively,
to be an extreme point, or to be any point that can be
reached from another pseudo-extreme point by incre-
menting or decrementing the value of a nonbasic vari-
able, maintaining feasibility, to a new value at which
some integer variable receives an integer value. Thus, a
pseudo-extreme point can arise by assigning nonbasic
variables values other than upper and lower bounds. It
is not difficult to prove that an optimal MIP solution
lies at one of these pseudo-extreme points.

A truncated pivot occurs in this setting when a
change in a nonbasic variable stops short of making the
variable equal to one of its bounds, and before causing
any basic variable to equal one of its bounds, but drives
some basic integer variable x, to an integer value u. The
basis exchange is executed in the standard manner for
such a pivot, and the basic variable x, becomes nonbasic
at the value u.

From these observations, the zero-one approach
may be extended to a procedure that transitions among
adjacent pseudo-extreme points (or jumps beyond to
nonadjacent pseudo-extreme points), while creating
tabu status in a manner analogous to that previously
indicated.

MIP Method 3
The final variant of tabu search for MIP problems may
be characterized by reference to moves that consist of
imposing (and relaxing) constraints, rather than moves
defined as mappings. The constraints underlying such
moves arise from disjunctions of the form "x, s u or
xJ 3 u + 1," as u and u + 1 range over admissible
integer values for an integer variable xJ. Such disjunc-
tions are the building blocks for many branch and

those based on defining moves as mappings. In bartic-
ular, we define moves that derive from disjunctions to
consist of three types: restriction moves, relaxation
moves and complement moves.

A restriction move takes the form exemplified by
the Dakin branching scheme for branch and bound
which imposes one of the two constraints x, 6 [x,'] or
x, 3 [x,'] + 1, relative to a given trial solution x' , where
x, is an integer variable, x,' is not an integer, and [x,']
denotes the greatest integer c x,'. The motivation for
such moves, as in branch and bound and in cutting
methods, is to take X to be the feasible continuous
region, disregarding the stipulation that x1 is integer,
and to impose constraints progressively until obtaining
a subset of X whose optimal continuous extreme point
solution, minimizing c(x), yields integer values for the
components of XI.

Specifically, let the constraints associated with a
given stage of such a process be summarized by refer-
ence to regions RI, i = 1, . . . , r, where each R, has the
form Ix: x, s u) or {x: x, a u + 1) for a given integer
variable x, and integer u. Then the current feasible
region X', created by imposing the associated con-
straints, is given by

(By convention, X' = X when r = 0.) The trial solution
x', associated with X' is an optimal solution to the
linear program

(LP') Minimize c(x): x E X'

Thus, assuming (LP') has a feasible (and bounded
optimal) solution x' with some component of x,' non-
integer, a restriction move consists of selecting a con-
straint whose corresponding region R,, I creates a new
feasible region X" given by

X" = X' n R,+,.

Then upon increasing r by 1, X" becomes the current
X'.

A relaxation move is the reverse of a restriction
move and consists of discarding a previously imposed
constraint.

A complementation move consists of replacing one
of the two constraints xJ c u and x, 3 u + 1 by the
other, where the constraint that is replaced corresponds
to one of the regions R,.

Based on the foregoing definitions, we present an
outline of the third MIP procedure, temporarily omit-
ting reference to how the choices of the method are

Copvright O 2001 All Riqhts Reserved

Tabu Search. I1 27

made, and to the way in which particular moves acquire
and lose tabu status.

I
OUTLINE FOR MIP METHOD 3

1. Initialization. Start with X ' = X and r = 0.
2. Solve (LP'). If an optimal solution x ' for (LPf)

yields xI' integer, and if c(xf) < c(x*) for the
current best feasible MIP solution x*, then
record x ' as x* and go to Step 5. Otherwise, if
this step has been executed more than a
specified number of times since obtaining an
improved solution x* (or more than a specified
number of times overall), stop.

3. If xI' is integer, go to Step 5 and otherwise go to
Step 4.

4. Make a restriction move. Select an integer
variable xj such that x,' is not integer, and make a
non-tabu restriction move involving x,. If no such
move exists for all noninteger xjf in xl' go to Step
5. Otherwise, update R and X ' relative to the
selected move and return to Step 2.
5. Make a complementation or relaxation move.

Select some R,, i = I , . . . , r, and make a non-
tabu complementation or relaxation move. If r
= 0 or if no such move exists for all R,, stop.
Otherwise update x ' relative to the selected
move and return to Step 2.

To give this outline substance, it is necessary to
identify how choices are made at Steps 4 and 5, and
how tabu moves are defined. These elements have the
same role as specifying the form of OPTIMUM and
the composition of T in the framework of preceding
sections.

The choice of restriction moves at Step 4, and of
relaxation and complementation moves at Step 5, can
be based on the postoptimality information available
from solving (LP') at Step 2, employing considerations
analogous to those described in connection with the use
of the evaluation function v(xI) for MIP Method 1.
Generally speaking, the types of criteria used to select
branches in branch and b o ~ n d [~ , ~ ~ . ~ ~ , ~ ~ , ~ ~ 1 can also be
applied to choosing moves in the present setting.

However, there are differences in the analyses rel-
evant to branch and bound, and those relevant to tabu
search, that stem from differences in the underlying
organization of the two procedures. In tabu search the
postoptimality information required to evaluate poten-
tial moves is always available from the most recent
solution of (LP'), or from analysis that takes this solu-
tion as a starting point. In branch and bound, by
contrast, information required to evaluate (or execute)
a new branch which is reached by a backtracking or

"sidetracking" step, must be based on some process of
recovering or regenerating the tableau information
from solving some linear program in the past.

Branch and bound, moreover, lacks the option of
a complementation step, except where it is possible to
complement a branch that meets one of the leaves
(current end nodes) of the tree, since all other comple-
mentations require an enforced discard of intervening
choices. There is no adequate way to compare the effect
of remote complementations to those at the leaves of
the tree, even after recovering or regenerating relevant
information at the antecedent nodes, since bounds and
penalty calculations applicable to these earlier nodes
are less accurate than at their descendants.

Viewed from a tree perspective, tabu search always
works at the leaf level, currently maintaining only a
single path of branches from the root. Instead of having
a rigidly inherited sequence, the branches on the path
can have their order reshuffled to bring any branch
whose alternative is not tabu to the end of the tree, thus
enabling a single string of connections to yield a variety
of different possibilities for the next step. By this means,
there is greater latitude of choice to restructure the
search than in branch and bound. The presence of
additional choice opportunities on a single sequence of
branches, however, can entail more evaluative effort
per iteration if these opportunities are to be exploited
fully.

Another characteristic of tabu search to be noted
in this setting is that each option to be evaluated resides
at the same tree depth, i.e., may be considered as a leaf
of the tree. All such options therefore have access to
information of comparable quality, in contrast to the
inferior quality of information available at the earlier
nodes of a branch and bound tree. Moreover, once
enough branches have been created to make all com-
ponents of x, integer, thereby reaching a depth where
information concerning consequences of moves ap-
proaches its highest quality, the current depth can be
maintained on subsequent iterations (allowing increases
or decreases according to where new integer solutions
are found and the imposed constraints that are cur-
rently binding). By thus maintaining a close proximity
to integer solutions, the search tends to increase the
number of feasible MIP solutions generated as candi-
dates for x* in relation to the total number of iterations.

In the process of building to an ideal depth, an
alternative is to allow the algorithm to proceed from
Step 3 to Step 5 when x,' is not integer, provided r Z
0. By this approach, the method can continue to explore
a given depth, accepting only those complementation
moves that the solution of (LP') identifies as improving,
until a local optimum is obtained as a foundation for
going to the next level. Such a local optimum may

Copyright O 2001 All Rights Reserved

28 Glover

appropriately be defined relative to a function that
penalizes deviations of xi components from integer
values. (In this variation, a limit may be placed on the
number of iterations allowed at a given level.)

Finally, the relaxation move for tabu search offers
an additional possibility for increased latitude of choice.
A complementation move can be viewed as a composite
move consisting of a relaxation move followed by a
restriction move, where both moves are defined relative
to the same variable. After making a relaxation move,
if a restriction move involving a different variable be-
comes preferable, then such an alternative is available
to be selected by the method if the two types of moves
are made in sequence rather than in combination. This
type of relaxation-restriction sequence has no precise
counterpart in branch and bound.

Defining Tabu Status
The manner of determining tabu status involves several
considerations beyond those involved in creating the
set T (or associated list T') indicated for the two pre-
ceding MIP procedures. In particular, the three types
of moves employed by MIP Method 3 suggests a natural
implementation involving the creation of three tabu
lists T I , T2 and T3, with associated parameters t , , t2,
t3.

The first list, T I , is updated whenever a relaxation
move is made. If the relaxation move discards the
constraint xJ < u (or x, 2 u + I) , then TI is used to
prevent a restriction move from reimposing this same
constraint until t, restriction or complementation
moves have been made. Note that t, is not the size
of T , , which will generally vary. Since it is reasonable
to make no more relaxation moves than restriction
moves, however, T I typically will have no more than t,
elements.

The list T2 is updated when a restriction move is
made. Only the identity of the variable x, involved in
the restriction, and not the form of the bound imposed,
is relevant in this case. The role of T2 is to prevent the
occurrence of any relaxation move that involves xJ, for
t2 restriction or complementation moves. Here too, tz
does not identify the size of TZ but provides an upper
limit, in this case without exception.

Finally, the list T3 is updated when a complemen-
tation move is made. Ts is used both to prevent the
reverse of this complementation and to prevent the
restriction move that reimposes the same constraint
discarded by the complementation move, for a period
of t3 restriction or complementation moves.

In applying the parameters t, , t2 and t3, particularly
in the variant that seeks to generate local optima de-
fined relative to a given depth before proceeding to the
next, an alternative is to defer activation of the tabu
lists until a deterioration in some evaluation function

cannot be avoided (e.g., employing a function that
combines c(x) with a penalty for integer infeasibility).
The opportunity to apply the types of dynamic tabu list
strategies of Section 2 in this setting creates additional
avenues for exploration, and poses a research challenge
of determining the best way to handle moves that may
be viewed as "partial complements" of others.

MIP Aspiration Level Functions

Two types of aspiration level functions are relevant
to all of the preceding MIP methods. The first is based
on stratifying possible values for c(x) into intervals I , ,
IZ, . . . , I,,. Let A(h) denote the aspiration level for Ih,
where A(h) is large initially. When a move results in
replacing solution x ' by a next solution x", identify I,
and I, such that c(xf) E I, and c(x") E I,, and let

and

Then tabu status can be disregarded for a move that
leads from a subsequent x ' to a subsequent x" if

c(xf') c A(h) where c(x ') E Ih.

To apply this criterion at the point where moves are
evaluated, c(x ') may not be known accurately, but only
approximated by the evaluation criteria. In such cases,
the updating of A(q) and A(p) also may be based on
approximate evaluations of c(x") or a refined approxi-
mation may be used for the aspiration level test. (The
updating of A(p) also may optionally be omitted.) For
MIP Method 3, c(x) should be replaced for the opera-
tions of checking and updating aspiration levels by a
function which incorporates a penalty for noninteger x,
vectors.

The second type of aspiration level function is
keyed to the variable and type of move employed. Let
A(j, u) represent the aspiration value of c(x) for a
"Type v" move involving variable xJ. For MIP Method
1, xJ is the variable whose value is changed on a given
iteration and v = 1 or 2 according to whether the
variable is incremented or decremented. In the adjacent
extreme point procedure of MIP Method 2, x, can be a
variable that enters (or leaves) the basis, and v takes
only the value 1. For MIP Method 3, xJ is the variable
associated with the constraint(s) currently relaxed or
(and) imposed, and v takes on values to code the
possibilities previously identified as relevant to creating
T1, T2 and T3. In all these cases, A(j, v) can be
initialized and updated in a manner analogous to that
indicated for A(h).

Finally, we note that these aspiration level func-
tions can be integrated with the tabu restrictions in the
manner indicated in Section 4 of Part I.

Tabu Search. I1 29

Additional MIP Memory Functions

Strategies for intensifying and diversifying search by
means of intermediate- and long-term memory func-
tions can vary widely in sophistication in the MIP
setting, but it is worth noting that simple approaches
are available that are easy to implement.

An intermediate-term memory function for the
three MIP methods can be based on identifying vari-
ables that consistently receive certain values or bounds,
or consistently appear in or out of the basis, in selected
subsets of the best solutions (e.g., identified by cluster
analysis that groups solutions of similar types). These
variables may then be compelled to adopt the restric-
tions (values, bounds or basis classifications) thus as-
sociated with them for an additional period of search.

A simple long-term memory function can be based
on recording the frequency that variables, or subsets of
variables, take on distinguishing characteristics (i.e.,
appear at certain values, bounds, or basis states) in the
trial solutions generated to date. Then the solution
process is restarted or continued using a modified eval-
uation criterion that avoids particular classes of moves
in relation to their recorded frequency, until reaching
a trial solution that is locally optimal by this modified
evaluation.

4. Tabu Search Applications

This section briefly highlights some of the applications
of tabu search which have occurred (or have become
more generally known) in the interval since the appli-
cations described in Part I.

A variety of tabu search implementations have
been developed for problems containing a central fea-
ture that can be expressed by means of a graph theory
or network flow representation. An example is a uni-
versity course scheduling problem whose underlying
structure has been expressed by Hertz and de Werra[17]
as a weighted graph partitioning problem. In this ap-
proach, courses are represented as nodes and incom-
patibilities between courses are represented as edges. A
different weight w(e) is assigned to each edge e accord-
ing to the importance of the associated incompatibility.
The goal is to partition the set of nodes N into k subsets,
N, , . . . , Nk, in order to minimize w(EI) + - . . + w(Ek),
where w(E,) = C (w(e): e E E,) and El is the set
containing the edges with both endpoints in N,.

As in most real world applications, the resulting
graph theory formulation does not encompass all con-
straints of interest, and the method is therefore designed
to handle additional geographical constraints (involving
different buildings in the university), compactness re-
quirements and classroom capacity requirements. The
approach has been successfully applied to schedule 300
courses for the Faculty of Economics at the University

of Geneva. Two variants of this procedure, similarly
based on an underlying graph theory model, have been
developed by Hertz and de Werra[17] and by Benker4]
for scheduling courses, respectively, at the Swiss Federal
Institute of Technology and at a technical school in
Austria. In each case, additional restrictions which com-
plicate the basic model framework are handled directly
by incorporating appropriate infeasibility checks into
the tabu search procedure.

Telecommunications problems involving mini-
mum cost installation and call routing can be given
natural formulations as network flow problems with
discrete (all-or-none) conditions. The first phase of a
study applying a variety of approaches for handling
these formulations is described in a volume edited by
J. A parallel processing implementation of
tabu search for a path assignment problem (Oliviera
and Stro~d[~']) and a partitioned tabu search approach
for a platform location and sizing problem (Lee[241)
emerged as significant developments of the volume,
yielding highly effective solutions for their respective
problems, while encompassing more of the real world
attributes of these problems than accommodated by the
other approaches studied.

A more classical graph theory application has been
developed by Friden, Hertz and de WerraL8] to find large
stable node sets in a graph. (A node set is stable if no
pair of its elements is joined by an edge.) An approach
for accelerating the method was devised by employing
three different tabu lists which operate hierarchically.
The study examines random graphs containing up to
1500 nodes, and in 60% of the cases obtains stable sets
with cardinality equal to the probabilistic estimate of
the maximum. In the remaining cases, the cardinality
is only one unit below this estimate.

An extensive study applying tabu search to flow
shop sequencing problems has been camed out by
Widmer and Hertz.[361 Their implementation of tabu
search succeeded in obtaining solutions superior to the
best previously found (by applying a range of methods
proposed in the literature) in about 90% of the cases.

A study by Laguna, Barnes and Glover[211 exam-
ined a machine scheduling problem that requires min-
imizing a weighted combination of delay penalties and
sequence dependent setup costs. The method easily
generated solutions to 20-job problems that could not
be solved by several branch and bound procedures
within 150 CPU seconds on a mainframe computer.
Within a comparable time span (averaging 155 seconds)
on a microcomputer, rather than a mainframe, the tabu
search approach completed a set of 12 solution trials
per problem and succeeded in obtaining an optimal
solution to each. Moreover, the worst solutions ob-
tained by tabu search over the 12 trials averaged within
99.8% of optimality, with a worst case of 99.6% of

Copyright O 2001 All Rights Reserved

30 Glover

optimality for all problems and parameter settings. The
method also quickly obtained high quality solutions to
larger problems which the optimizing methods could
not handle either within reasonable time limits or
storage requirements.

A sequel to this study by Glover and Laguna[l4]
focused on the harder problems of the first study and
examined larger problems ranging up to 100 jobs. The
goal was to seek improvements by exploiting the "best
move" orientation of tabu search, incorporating an
additional class of moves and using the learning pro-
cedure of target analy~is.['~. '~] The learning process was
designed to identify the possibility of improved decision
criteria for evaluating moves. As suggested by intuition,
the inclusion of additional moves (introducing job
transfers in conjunction with the job swaps previously
studied), produced improvements in average solution
quality and processing time. More significantly, with
less evident intuitive support, the study found that a
better criterion existed for evaluating moves than the
objective function values produced by these moves.
Decisions based on objective function values were
shown by target analysis to exhibit a regional depend-
ency, reducing their quality in situations where no
admissible improving moves existed. This dependency
was exploited by biasing evaluations in "bad regions"
to reflect evaluations previously made in "good re-
gions," and by creating an event-dependent tabu list
which relaxed the tabu search requirements of admis-
sibility-compensating for this relaxation by a strategy
of penalizing repetitions as well as reversals of moves.
The outcome nearly halved the number of iterations
required to obtain optimal solutions to the 20 job
problems (whose optimal solutions are known), and
additionally improved the quality of the best solutions
found for the larger problems.

An application of tabu search to the quadratic
assignment problem has been developed by Skorin-
~ a p o v , [~ ~] utilizing tabu lists whose lengths vary both
in relation to problem size and in relation to the stage
of solution. A notable feature of the approach is its
effective use of a long-term memory process for diver-
sifying the search along the lines suggested in Part I.
Tested on problems taken from the literature, the
method yielded best known solutions in all cases while
requiring less CPU time than previously reported. The
method also succeeded in finding a better solution than
the best previously known for Steinberg's problem,[351
and obtained solutions whose quality was always as
good or better than that of solutions obtained by a study
of the quadratic assignment problem using simulated
annealing.

An unconventional tabu search application to the
traveling salesman problem by Malek et a1.[261 uses a

parallel processing approach which incorporates a fault
tolerant design, pursuing the goal of allowing recovery
from a processor failure without having to restart the
entire program. The approach makes use of Karp's
procedure[lgl of subdividing the problem nodes into
clusters, seeking a good tour on each cluster, and then
progressively merging pairs of clusters, using tabu
search to guide the tour generation process at each
stage. In addition to developing results concerning fault
tolerant design, the approach provided a means for
obtaining good trade-offs in solution time versus solu-
tion quality. For example, applied to a 532-city problem
that has required 60 hours of run time to achieve
~ptimali ty,[~~I the method succeeded in obtaining a
95% optimal solution in only 38 seconds.

Another traveling salesman study by Mirek et al.[251
compares tabu search to simulated annealing, finding
that tabu search performs uniformly more effectively
and achieves additional gains by the incorporation of a
long-term diversification strategy, as in the study of
Skorin-Kapo~.[~~I This study also discloses that a hybrid
approach, which trades solutions between tabu search
and a modified form of simulated annealing, works well
in a parallel processing environment. The authors sug-
gest that their modification of simulated annealing can
be interpreted as a relaxed version of probabilistic tabu
search, hence motivating a study which investigates the
probabilistic framework more thoroughly.

Another study of traveling salesman problems by
Knox and Glover[201 tests the short-term memory com-
ponent of tabu search against a variant of simulated
annealing called the ELS method, due to Lam.[221 The
ELS method departs from simulated annealing in sev-
eral ways similar to those incorporated in the hybrid
approach by Malek et al.,[251 and additionally makes
use of special data registers to improve computational
efficiency. Applied to classical test problems ranging
from 25 to 105 cities, both the ELS method and tabu
search succeeded in obtaining best known solutions at
least once for each problem, out of 25 trial runs with
different starting solutions. However, tabu search ob-
tained best known solutions with somewhat greater
frequency. Treating the frequencies of finding these
solutions with each method as marginal probabilities,
and applying a binomial probability distribution, the
study identified the joint probability of finding a best
known solution at least once in two runs to be 0.32 for
tabu search and 0.04 for the ELS method. Across a
series of five runs, these probabilities were 0.86 for tabu
search and 0.36 for the ELS method. The study also
underscored the relevance of employing candidate list
strategies to reduce the number of moves examined in
larger applications, as treated in [12].

A somewhat different type of application involves

Copvriaht O 2001 All Ria& Rescored

Tabu Search. I1 31

the solution of a character recognition problem ex-
pressed as a minimum cardinality set covering problem
by Hertz.[17] Each character is viewed as a set of black
pixels on a grid. A pair of characters (CI , C2) is discrim-
inated by a pixel if the pixel is contained in exactly one
of the two members of the pair. The goal is to determine
a smallest number of pixels that will discriminate all
pairs of characters. Applied to a problem of discrimi-
nating 62 characters (1 89 1 pairs) on a grid of 600 pixels,
the tabu search procedure found a set of 16 pixels in
about 10 minutes. Prior to this, the best known solution
contained 17 pixels and was obtained by an integer
programming method that was stopped after consum-
ing several hours of computation.

In another study of a "recognition problem," de
Werra and HertzI7] describe an application of tabu
search to neural networks. The objective is to create a
transformation matrix defining synaptic weights for a
visual pattern recognition problem, enabling the neural
network to learn prototype patterns, or states. More
precisely, the goal is to be able to identify inaccurate
copies of the prototype states by a process that corrects
any errors that may occur, up to d in number, where
the synaptic weights successively transform an initial
state containing these errors into a final stable state
which corresponds to the associated prototype. Barring
the ability to correct all possible states that may contain
errors, a secondary goal is to minimize the number of
parasite states-i.e., stable states, reached by the trans-
formation process that do not correspond to the speci-
fied prototypes.

Using Hamming distances to evaluate the differ-
ence between a given state and its prototype, the objec-
tive function was formulated as that of minimizing the
discrepancy of all initial states from their associated
prototypes after a single application of the transforma-
tion matrix. The matrix that produced the greatest
single step reduction in the number of errors, employing
a weighted sum across all states containing at most d
errors, was therefore assigned the highest evaluation.
Starting with an arbitrary matrix, the moves used by
the tabu search procedure consisted of changing exactly
one element of the matrix, considering the smallest
increase and decrease in the weight of this element such
that the resulting matrix produced a different state than
the unchanged matrix (where both were applied to the
given current state).

The method was tested on a visual pattern recog-
nition problem from 1301 using two tabu lists, one to
prevent reversing an "increase move" and the other to
prevent reversing a "decrease move." The goal was to
learn two prototype states in a network of 25 neurons
containing up to 6 errors. The tabu search method
resulted in an 80% reduction (from 21 to 5) in the

number of parasite states produced by the previous
learning approach. Moreover, instead of employing
learning trials across all relevant associations of initial
states and prototypes, which numbered approximately
half a million, the approach was able to achieve its
results after learning trials involving only 50 associa-
tions.

Conclusion

The foregoing applications of tabu search demonstrate
the potential usefulness of the approach, and the fertile
opportunity for innovation in adapting the method to
alternative settings. As the number of applications of
tabu search continues to grow, more is being learned
about the best ways to apply these methods, and in
time we may expect to see a more thorough determi-
nation of the types of data structures, tabu list proce-
dures, aspiration criteria and other component pro-
cesses that work best for particular types of problems.
The aim of this paper has been to expose some of the
future directions for extending and applying tabu
search, and to document some of the findings of those
who have contributed to its present practical success.

ACKNOWLEDGMENT
This research was supported in part by the Center for

Space Construction of the University of Colorado under
NASA Grant NAGQ- 1 388.

REFERENCES
1. E. BALAS, 1979. Disjunctive Programming, in P.L. Ham-

mer, E.L. Johnson and B. Korte (eds.), Discrete Optimi-
zatron II, North Holland, Amsterdam, pp. 3-52.

2. E. BALAS and C. MARTIN, Pivot and Complement-
A Heuristic for 0-1 Programming, Management Science
26, 86-96.

3. M.S. BAZARAA and C.M. SHETTY, 1976. Foundations of
Optimization, Springer Verlag, Berlin.

4. CH. BENKE, 1988. Die Tabu-Search Method als moglicher
Losungsansatz fur das Stundenplanproblem, Institut fur
Hohere Studien, Vienna, Austria (August).

5. V.J. BOWMAN and F. GLOVER, 1972. A Note on Zero-
One Integer and Concave Programming, Operations Re-
search 20: I, 182-183.

6. H. CROWDER, E. JOHNSON and M. PADBERG, 1983. Solv-
ing Large Scale 0-1 Linear Programming Problems, Op-
eratlons Research 31. 4, 803-934.

7. D. DE WERRA and A. HERTZ, 1989. Tabu Search Tech-
niques: A Tutorial and an Application to Neural Net-
works, OR Spectrum 11, 13 1-14 1.

8. C. FRIDEN, A. HERTZ and D. DE WERRA, Stabulus: A
Technique for Finding Stable Sets in Large Graphs with
Tabu Search, to appear in Computing.

9. R.S. GARFINKEL and G.L. NEMHAUSER, 1972. Integer
Programming, John Wiley & Sons, New York.

10. F. GLOVER, 1986. Future Paths for Integer Programming
and Links to Artificial Intelligence, Computers and Op-
erations Research 13: 5 , 533-549.

1 1. F. GLOVER, 1989. Tabu Search, Part I, ORSA Journal on
Computing 1: 3, 190-206.

Copyright O 2001 All Rights Reserved

32 Glover

12. F. GLOVER, 1989. Candidate List Strategies and Tabu
Search, CAAI Research Report, University of Colorado,
Boulder (July).

13. F. GLOVER and H.J. GREENBERG, 1989. New Approaches
for Heuristic Search: A Bilateral Linkage with Artificial
Intelligence, European Journal of Operational Research
39: 2, 1 19-1 30.

14. F. GLOVER and M. LAGUNA, 1989. Target Analysis to
Improve a Tabu Search Method for Machine Scheduling,
Technical Report, Advanced Knowledge Research
Group, US West Advanced Technologies, Boulder, CO
(September).

15. F. GLOVER, D. KLINGMAN, N. PHILLIPS AND R.
SCHNEIDER, 1985. New Polynomial Shortest Path Algo-
rithms and their Computational Attributes, Management
Science 31, 1106-1 128.

16. P.L. HAMMER, E.L. JOHNSON, B.H. KORTE and G.L.
NEMHAUSER, 1977. Studies in Integer Programming,
North-Holland, Amsterdam.

17. A. HERTZ and D. DE WERRA, The Tabu Search Metaheu-
ristic: How We Used It, to appear in Annals of Mathe-
matics and Artificial Intelligence.

18. R.G. JEROSLOW, 1977. Cutting-Plane Theory: Disjunc-
tive Methods, Annals of Discrete Mathematics I,
293-330.

19. R.M. KARP, 1977. Probabilistic Analysis of Partitioning
Algorithms for the Traveling Salesman Problem in the
Plane, Mathematics of Operations Research 2: 3,
209-224.

20. J. KNOX and F. GLOVER, 1989. Comparative Testing of
Traveling Salesman Heuristics Derived from Tabu
Search, Genetic Algorithms and Simulated Annealing,
Center for Applied Artificial Intelligence, University of
Colorado (September).

21. M. LAGUNA, J.W. BARNES and F. GLOVER, Scheduling
Jobs with Linear Delay Penalties and Sequence Depend-
ent Setup Costs Using Tabu Search, Research Report,
Department of Mechanical Engineering, The University
of Texas-Austin, April 1989.

22. J. LAM, 1988. An Efficient Simulated Annealing Sched-
ule, Ph.D. Dissertation, Report 88 18, Department of
Computer Science, Yale University (September).

23. E.L. LAWLER, J.K. LENSTRA and A.H.G. RINNOOY KAN
(eds.), 1985. The Traveling Salesman Problem, North-
Holland, Amsterdam.

24. M. LEE, 1989. Least-Cost Network Topology Design for
a New Service Using Tabu Search, Heuristics for Com-
binatorial Optimization Sect. 6 , 1 - 18.

25. M. MALEK, M. GURUSWAMY, H. OWENS and M. PAN-
DYA, 1989. Serial and Parallel Search Techniques for the
Traveling Salesman Problem, Annals of OR: Linkages
with Artificial Intelligence.

26. M. MALEK, M. HEAP, R. KAPUR and A. MOURAD, 1989.
A Fault Tolerant Implementation of the Traveling Sales-
man Problem, Research Report, Department of Electrical
and Computer Engineering, University of Texas-Austin,
(May).

27. S. OLIVIERA and G. STROUD, 1989. A Parallel Version of
Tabu Search and the Path Assignment Problem, Heuris-
tics for Combinatorial Optimization Sect. 4, 1-24.

28. G. NEMHAUSER, and L. WOLSEY, 1988. Integer and Com-
binatorial Optimization, Wiley, New York.

29. M. PADBERG and G. RINALDI, 1987. Optimization of a
532-City Symmetric Traveling Salesman Problem by
Branch and Cut, Operations Research Letters 6: 1, 1-7.

30. L. PERSONNAZ, I. GUYON and G. DREYFUS, 1986. Collec-
tive Computational Properties of Neural Networks: New
Learning Mechanisms, Physical Review A34,42 17-4227.

31. J. RYAN (ed.), 1989. Final Report of Mathematics Clinic,
Heuristics for Combinatorial Optimization (June).

32. H.M. SALKIN, 1975. Integer Programming, Addison-
Wesley, Reading, Mass.

33. A. SCHRIJVER, 1986. Theory of Linear and Integer Pro-
gramming, Wiley Interscience Series, New York.

34. J. SKORIN-KAPOV, 1989. Tabu Search Applied to the
Quadratic Assignment Problem, ORSA Journal in Com-
puting 2: 1, 33-45.

35. L. STEINBERG, 1961. The Backboard Wiring Problem:
A Placement Algorithm, SIAM Review 3, 37-50.

36. M. WIDMER and A. HERTZ, A New Approach for Solving
the Flowshop Sequencing Problem, to appear in Euro-
pean Journal of Operational Research.

37. S. ZIONTS, 1974. Linear and Integer Programming,
Prentice-Hall, Englewood Cliffs, NJ.

SUPPLEMENTARY BIBLIOGRAPHY
J. BOVET, C. CONSTANTIN and D. DE WERRA, 1987. A Convoy

Scheduling Problem, Research Report ORWP 87/22, Swiss
Federal Institute of Technology in Lausanne (December).

M. GRONALT, 1988. Die Verwendung der Tabu-Methode zur
Losung eines Loading Problems, Project Report, Institut
fur Hohere Studien, Vienna, Austria (June).

P. HANSEN and B. JAUMARD, 1987. Algorithms for the Max-
imum Satisfiability Problem, RUTCOR Research Report
RR#43-87, Rutgers, New Brunswick, NJ.

A. HERTZ and D. DE WERRA, 1987. Using Tabu Search
Techniques for Graph Coloring, Computing 29, 345-35 1.

J. KNOX, 1989. The Application of Tabu Search to the Sym-
metric Traveling Salesman Problem, Ph.D. thesis, Graduate
School of Business, University of Colorado (July).

CH. WENDELIN, 1988. Graph Partitioning with the Aid of the
Tabu Method, Project report, Institut fur Hohere Studien,
Vienna, Austria (June).

Cowright O 7001 All

